27 research outputs found

    The Properties of Galaxies in Voids

    Get PDF
    We present a comparison of the properties of galaxies in the most underdense regions of the Universe, where the galaxy number density is less than 10% of the mean density, with galaxies from more typical regions. We have compiled a sample of galaxies in 46 large nearby voids that were identified using the Sloan Digital Sky Survey DR4, which provides the largest coverage of the sky. We study the u-r color distribution, morphology, specific star formation rate, and radial number density profiles for a total of 495 galaxies fainter than M_r=-20.4 +5logh located inside the voids and compare these properties with a control sample of field galaxies. We show that there is an excess of blue galaxies inside the voids. However, inspecting the properties of blue and red galaxies separately, we find that galaxy properties such as color distribution, bulge-to-total ratios, and concentrations are remarkably similar between the void and overall sample. The void galaxies also show the same specific star formation rate at fixed color as the control galaxies. We compare our results with the predictions of cosmological simulations of galaxy formation using the Millennium Run semi-analytic galaxy catalog. We show that the properties of the simulated galaxies in large voids are in reasonably good agreement with those found in similar environments in the real Universe. To summarize, in spite of the fact that galaxies in voids live in the least dense large-scale environment, this environment makes very little impact on properties of galaxies.Comment: 11 pages, 15 figures, Submitted to MNRA

    Detailed theoretical predictions of the outskirts of dark matter halos

    Full text link
    In the present work we describe the formalism necessary to derive the properties of dark matter halos beyond two virial radius using the spherical collapse model (without shell crossing), and provide the framework for the theoretical prediction presented in Prada et al. (2005). We show in detail how to obtain within this model the probability distribution for the spherically-averaged enclosed density at any radii P(delta,r). Using this probability distribution, we compute the most probable and mean density profiles, which turns out to differ considerably from each other. We also show how to obtain the typical profile, as well as the probability distribution and mean profile for the spherically averaged radial velocity. Two probability distributions are obtained: a first one is derived using a simple assumption, that is, if Q is the virial radius in Lagrangian coordinates, then the enclosed linear contrast delta_l(q,Q) must satisfy the condition that delta_l(q=Q) = delta_vir, where delta_vir is the linear density contrast within the virial radius Rvir at the moment of virialization. Then we introduce an additional constraint to obtain a more accurate P(delta,r) which reproduces to a higher degree of precision the distribution of the spherically averaged enclosed density found in the simulations. This new constraint is delta_l(q,Q) < delta_vir for all q > Q, which means that there are no radii larger than Rvir where the density contrast is larger than that used to define the virial radius. Finally, we compare in detail our theoretical predictions for the probability distributions with the results found in the simulations.Comment: 12 pages, 8 figures, 1 table, replaced to match the published versio

    How far do they go? The outer structure of dark matter halos

    Full text link
    We study the density profiles of collapsed galaxy-size dark matter halos with masses 1e11-5e12 Msun focusing mostly on the halo outer regions from the formal virial radius Rvir up to 5-7Rvir. We find that isolated halos in this mass range extend well beyond Rvir exhibiting all properties of virialized objects up to 2-3Rvir: relatively smooth density profiles and no systematic infall velocities. The dark matter halos in this mass range do not grow as one naively may expect through a steady accretion of satellites, i.e., on average there is no mass infall. This is strikingly different from more massive halos, which have large infall velocities outside of the virial radius. We provide accurate fit for the density profile of these galaxy-size halos. For a wide range (0.01-2)Rvir of radii the halo density profiles are fit with the approximation rho=rho_s exp(-2n[x^{1/n}-1])+rho_m, where x=r/r_s, rho_m is the mean matter density of the Universe, and the index n is in the range n=6-7.5. These profiles do not show a sudden change of behavior beyond the virial radius. For larger radii we combine the statistics of the initial fluctuations with the spherical collapse model to obtain predictions for the mean and most probable density profiles for halos of several masses. The model give excellent results beyond 2-3 formal virial radii.Comment: 15 pages, 10 figures, submitted to Ap

    The statistics of voids as a tool to constrain cosmological parameters: sigma_8 and Omega_m h

    Full text link
    We present a general analytical formalism to calculate accurately several statistics related to underdense regions in the Universe. The statistics are computed for dark matter halo and galaxy distributions both in real space and redshift space at any redshift. Using this formalism, we found that void statistics for galaxy distributions can be obtained, to a very good approximation, assuming galaxies to have the same clustering properties as halos above a certain mass. We deducted a relationship between this mass and that of halos with the same accumulated number density as the galaxies. We also found that the dependence of void statistics on redshift is small. For instance, the number of voids larger than 13 Mpc/h (defined to not contain galaxies brighter than M_r=-20.4 +5logh change less than 20% between z=1 and z=0. However, the dependence of void statistics on sigma_8 and Omega_m h is considerably larger, making them appropriate to develop tests to measure these parameters. We have shown how to efficiently construct several of these tests and discussed in detail the treatment of several observational effects. The formalism presented here along with the observed statistics extracted from current and future large galaxy redshift surveys will provide an independent measurement of the relevant cosmological parameters. Combining these measurements with those found using other methods will contribute to reduce their uncertainties.Comment: 17 pages, 4 figures, submitted to MNRA
    corecore