163 research outputs found
Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa
The carnivorous aquatic Waterwheel Plant (Aldrovanda vesiculosa L.) and the
closely related terrestrial Venus Flytrap (Dionaea muscipula SOL. EX J. ELLIS)
both feature elaborate snap-traps, which shut after reception of an external
mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as
a miniature, aquatic Dionaea, an assumption which was already established by
Charles Darwin. However, videos of snapping traps from both species suggest
completely different closure mechanisms. Indeed, the well-described snapping
mechanism in Dionaea comprises abrupt curvature inversion of the two trap
lobes, while the closing movement in Aldrovanda involves deformation of the
trap midrib but not of the lobes, which do not change curvature. In this paper,
we present the first detailed mechanical models for these plants, which are
based on the theory of thin solid membranes and explain this difference by
showing that the fast snapping of Aldrovanda is due to kinematic amplification
of the bending deformation of the midrib, while that of Dionaea unambiguously
relies on the buckling instability that affects the two lobes.Comment: accepted in Physical Review
Extracting Multidimensional Phase Space Topology from Periodic Orbits
We establish a hierarchical ordering of periodic orbits in a strongly coupled
multidimensional Hamiltonian system. Phase space structures can be
reconstructed quantitatively from the knowledge of periodic orbits alone. We
illustrate our findings for the hydrogen atom in crossed electric and magnetic
fields.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let
Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits
A hierarchical ordering is demonstrated for the periodic orbits in a strongly
coupled multidimensional Hamiltonian system, namely the hydrogen atom in
crossed electric and magnetic fields. It mirrors the hierarchy of broken
resonant tori and thereby allows one to characterize the periodic orbits by a
set of winding numbers. With this knowledge, we construct the action variables
as functions of the frequency ratios and carry out a semiclassical torus
quantization. The semiclassical energy levels thus obtained agree well with
exact quantum calculations
Complex gastroschisis: a new indication for fetal surgery?
Gastroschisis (GS) is a congenital abdominal wall defect, in which the bowel eviscerates from the abdominal cavity. It is a non-lethal isolated anomaly and its pathogenesis is hypothesized to occur as a result of two hits: primary rupture of the ‘physiological’ umbilical hernia (congenital anomaly) followed by progressive damage of the eviscerated bowel (secondary injury). The second hit is thought to be caused by a combination of mesenteric ischemia from constriction in the abdominal wall defect and prolonged amniotic fluid exposure with resultant inflammatory damage, which eventually leads to bowel dysfunction and complications. GS can be classified as either simple or complex, with the latter being complicated by a combination of intestinal atresia, stenosis, perforation, volvulus and/or necrosis. Complex GS requires multiple neonatal surgeries and is associated with significantly greater postnatal morbidity and mortality than is simple GS. The intrauterine reduction of the eviscerated bowel before irreversible damage occurs and subsequent defect closure may diminish or potentially prevent the bowel damage and other fetal and neonatal complications associated with this condition. Serial prenatal amnioexchange has been studied in cases with GS as a potential intervention but never adopted because of its unproven benefit in terms of survival and bowel and lung function. We believe that recent advances in prenatal diagnosis and fetoscopic surgery justify reconsideration of the antenatal management of complex GS under the rubric of the criteria for fetal surgery established by the International Fetal Medicine and Surgery Society (IFMSS). Herein, we discuss how conditions for fetoscopic repair of complex GS might be favorable according to the IFMSS criteria, including an established natural history, an accurate prenatal diagnosis, absence of fully effective perinatal treatment due to prolonged need for neonatal intensive care, experimental evidence for fetoscopic repair and maternal and fetal safety of fetoscopy in expert fetal centers. Finally, we propose a research agenda that will help overcome barriers to progress and provide a pathway toward clinical implementation. © 2021 International Society of Ultrasound in Obstetrics and Gynecology
Classical and quantum mechanical plane switching in CO2
Classical plane switching takes place in systems with a pronounced 1:2
resonance, where the degree of freedom with lowest frequency is
doubly-degenerate. Under appropriate conditions, one observes a periodic and
abrupt precession of the plane in which the doubly-degenerate motion takes
place. In this article, we show that quantum plane switching exists in CO2 :
Based on our analytical solutions of the classical Hamilton's equations of
motion, we describe the dependence on vibrational angular momentum and energy
of the frequency of switches and the plane switching angle. Using these
results, we find optimal initial wave packet conditions for CO2 and show,
through quantum mechanical propagation, that such a wave packet indeed displays
plane switching at energies around 10000 cm-1 above the ground state on time
scales of about 100 fs.Comment: accepted for publication in the Journal of Chemical Physic
Phase I clinical trial with IL-2-transfected xenogeneic cells administered in subcutaneous metastatic tumours: clinical and immunological findings
Various studies have emphasized an immunodepression state observed at the tumour site. To reverse this defect and based upon animal studies, we initiated a phase I clinical trial of gene therapy in which various doses of xenogeneic monkey fibroblasts (Vero cells) genetically engineered to produce human IL-2 were administered intratumorally in 8 patients with metastatic solid tumours. No severe adverse effect was observed in the 8 patients analysed during this clinical trial even in the highest dose (5 ¥ 107 cells) group. This absence of toxicity seems to be associated with rapid elimination of Vero-IL-2 cells from the organism. Indeed, exogenous IL-2 mRNA could no longer be detected in the peripheral whole blood 48 hours after Vero-IL-2 cell administration. In addition, we did not find any expression of exogenous IL-2 mRNA in post-therapeutic lesions removed 29 days after the start of therapy. A major finding of this trial concerns the two histological responses of two treated subcutaneous nodules not associated with an apparent clinical response. The relationship between local treatment and tumour regression was supported by replacement of tumour cells by inflammatory cells in regressing lesions and marked induction of T and natural killer cell derived cytokines (IL-2, IL-4, IFNg …) in post-therapeutic lesions analysed 28 days after the start of Vero-IL-2 administration. Gene therapy using xenogeneic cells as vehicle may therefore present certain advantages over other vectors, such as its complete absence of toxicity. Furthermore, the in vivo biological effect of immunostimulatory genes, i.e IL-2-, may be potentiated by the xenogeneic rejection reaction. © 2000 Cancer Research Campaign http://www.bjcancer.co
Mechanical model of the ultra-fast underwater trap of Utricularia
The underwater traps of the carnivorous plants of the Utricularia species
catch their preys through the repetition of an "active slow deflation / passive
fast suction" sequence. In this paper, we propose a mechanical model that
describes both phases and strongly supports the hypothesis that the trap door
acts as a flexible valve that buckles under the combined effects of pressure
forces and the mechanical stimulation of trigger hairs, and not as a panel
articulated on hinges. This model combines two different approaches, namely (i)
the description of thin membranes as triangle meshes with strain and curvature
energy, and (ii) the molecular dynamics approach, which consists in computing
the time evolution of the position of each vertex of the mesh according to
Langevin equations. The only free parameter in the expression of the elastic
energy is the Young's modulus E of the membranes. The values for this parameter
are unequivocally obtained by requiring that the trap model fires, like real
traps, when the pressure difference between the outside and the inside of the
trap reaches about 15 kPa. Among other results, our simulations show that, for
a pressure difference slightly larger than the critical one, the door buckles,
slides on the threshold and finally swings wide open, in excellent agreement
with the sequence observed in high-speed videos.Comment: Accepted for publication in Physical Review
- …