8,986 research outputs found

    Force distribution in a randomly perturbed lattice of identical particles with 1/r21/r^2 pair interaction

    Full text link
    We study the statistics of the force felt by a particle in the class of spatially correlated distribution of identical point-like particles, interacting via a 1/r21/r^2 pair force (i.e. gravitational or Coulomb), and obtained by randomly perturbing an infinite perfect lattice. In the first part we specify the conditions under which the force on a particle is a well defined stochastic quantity. We then study the small displacements approximation, giving both the limitations of its validity, and, when it is valid, an expression for the force variance. In the second part of the paper we extend to this class of particle distributions the method introduced by Chandrasekhar to study the force probability density function in the homogeneous Poisson particle distribution. In this way we can derive an approximate expression for the probability distribution of the force over the full range of perturbations of the lattice, i.e., from very small (compared to the lattice spacing) to very large where the Poisson limit is recovered. We show in particular the qualitative change in the large-force tail of the force distribution between these two limits. Excellent accuracy of our analytic results is found on detailed comparison with results from numerical simulations. These results provide basic statistical information about the fluctuations of the interactions (i) of the masses in self-gravitating systems like those encountered in the context of cosmological N-body simulations, and (ii) of the charges in the ordered phase of the One Component Plasma.Comment: 23 pages, 10 figure

    Executive function in first-episode schizophrenia

    Get PDF
    BACKGROUND: We tested the hypothesis that schizophrenia is primarily a frontostriatal disorder by examining executive function in first-episode patients. Previous studies have shown either equal decrements in many cognitive domains or specific deficits in memory. Such studies have grouped test results or have used few executive measures, thus, possibly losing information. We, therefore, measured a range of executive ability with tests known to be sensitive to frontal lobe function. METHODS: Thirty first-episode schizophrenic patients and 30 normal volunteers, matched for age and NART IQ, were tested on computerized test of planning, spatial working memory and attentional set shifting from the Cambridge Automated Neuropsychological Test Battery. Computerized and traditional tests of memory were also administered for comparison. RESULTS: Patients were worse on all tests but the profile was non-uniform. A componential analysis indicated that the patients were characterized by a poor ability to think ahead and organize responses but an intact ability to switch attention and inhibit prepotent responses. Patients also demonstrated poor memory, especially for free recall of a story and associate learning of unrelated word pairs. CONCLUSIONS: In contradistinction to previous studies, schizophrenic patients do have profound executive impairments at the beginning of the illness. However, these concern planning and strategy use rather than attentional set shifting, which is generally unimpaired. Previous findings in more chronic patients, of severe attentional set shifting impairment, suggest that executive cognitive deficits are progressive during the course of schizophrenia. The finding of severe mnemonic impairment at first episode suggests that cognitive deficits are not restricted to one cognitive domain

    The phase shift of an ultrasonic pulse at an oil layer and determination of film thickness

    Get PDF
    An ultrasonic pulse incident on a lubricating oil film in a machine element will be partially reflected and partially transmitted. The proportion of the wave amplitude reflected, termed the reflection coefficient, depends on the film thickness and the acoustic properties of the oil. When the appropriate ultrasonic frequency is used, the magnitude of the reflection coefficient can be used to determine the oil film thickness. However, the reflected wave has both a real component and an imaginary component, and both the amplitude and the phase are functions of the film thickness. The phase of the reflected wave will be shifted from that of the incident wave when it is reflected. In the present study, this phase shift is explored as the film changes and is evaluated as an alternative means to measure oil film thickness. A quas i-static theoretical model of the reflection response from an oil film has been, developed. This model relates the phase shift to the wave frequency and the film properties. Measurements of reflection coefficient from a static model oil film and also from a rotating journal bearing have been recorded. These have been used to determine the oil film thickness using both amplitude and phase shift methods. In both cases, the results agree closely with independent assessments of the oil film thickness. The model of ultrasonic reflection is further extended to incorporate mass and damping terms. Experiments show that both the mass and the internal damping of the oil films tested in this work have a negligible effect on ultrasonic reflection. A potentially v ery useful application for the simultaneous measurement of reflection coefficient amplitude and phase is that the data can be used to negate the need for a reference. The theoretical relationship between phase and amplitude is fitted to the data. An extrapolation is performed to determine the values of amplitude and phase for an infinitely thick layer. This is equivalent to the reference signal determined by measuring the reflection coefficient directly, but importantly does not require the materials to be separated. This provides a simple and effective means of continuously calibrating the film measurement approach

    The Distribution of Family-Friendly Benefits Policies across Higher Education Institutions: A Cluster Analysis

    Get PDF
    Cluster Analysis of Family-Related Benefits Policies across U.S. Academic Institutions Although the under-representation of women in science and engineering tenure-track faculty positions is often linked to the conflict between childcare responsibilities and the normative academic tenure-track pathway, previous studies have tended to focus on individual life choices,rather than the effects of institutional-level policies and structure. More recent research on work/life policies in higher education have pushed our understanding of how organizational structure and political climates at the department and institution levels influence the ability of faculty members to integrate career and life responsibilities. Many post-secondary institutions offer more generous work/life benefits than required by the 1993 Family Medical Leave Act (FMLA), which provides employees with 12 weeks of unpaid, job-protected leave for family and medical reasons per year if the employee has worked for the employer at least 12 months. The types of family-related benefits offered, however, vary greatly across post-secondary institutions in the United States. Using cluster analysis, this study identifies the patterns of availability of parental leave and childcare benefits across U.S. academic institutions by grouping institutions into clusters of similar institutions. By so doing, the paper highlights the rates at which different types of institutions adopted family-friendly policies since the FMLA. Cluster analysis is a technique for grouping a collection of cases, such as institutions, by a number of attributes or variables. It is used across many fields including education, engineering,life, social, and physical sciences as an exploratory or data mining technique. This study applies a k-means cluster analysis, a well established technique previously used in engineering education research, to identify patterns in types of benefits policies offered by institutional characteristics or profiles. The characteristics examined include student demographics and enrollment size,faculty size, research expenditures, and instructional expenditures. The data come from the National Study of Postsecondary Faculty (NSOPF) Institution survey conducted by the National Center for Education Statistics with response rates exceeding 86%. The nationally representative 1993 and 2004 samples include 974 and 1,080 public and private not-for-profit institutions that confer associates, bachelors, or advanced degrees, respectively.Preliminary results with six clusters indicate that doctoral research institutions with the highest average instructional and research expenditures are more likely to offer a greater number of family-related benefits to both part-time and full-time faculty compared to associates, bachelors or masters institutions. These doctoral institutions also have the largest average student enrollment and a relatively more diverse student population. Ongoing work includes identifying the rates of adoption of benefits policies following the FMLA. By analyzing both 1993 and 2004,changes in the overall profiles of institutions with different policy arrangements may also be revealed. Research findings will provide a national perspective of academic institutions’ efforts to facilitate work-life integration among faculty to help administrators, policy makers, and other stakeholders shape educational policy

    Scale Invariance in a Perturbed Einstein-de Sitter Cosmology

    Full text link
    This paper seeks to check the validity of the "apparent fractal conjecture" (Ribeiro 2001ab: gr-qc/9909093, astro-ph/0104181), which states that the observed power-law behaviour for the average density of large-scale distribution of galaxies arises when some observational quantities, selected by their relevance in average density profile determination, are calculated along the past light cone. Implementing these conditions in the proposed set of observational relations profoundly changes the behaviour of many observables in the standard cosmological models. In particular, the average density becomes observationally inhomogeneous, even in the spatially homogeneous spacetime of standard cosmology, change which was already analysed by Ribeiro (1992b, 1993, 1994, 1995: astro-ph/9910145) for a non-perturbed model. Here we derive observational relations in a perturbed Einstein-de Sitter cosmology by means of the perturbation scheme proposed by Abdalla and Mohayaee (1999: astro-ph/9810146), where the scale factor is expanded in power series to yield perturbative terms. The differential equations derived in this perturbative context, and other observables necessary in our analysis, are solved numerically. The results show that our perturbed Einstein-de Sitter cosmology can be approximately described by a decaying power-law like average density profile, meaning that the dust distribution of this cosmology has a scaling behaviour compatible with the power-law profile of the density-distance correlation observed in the galaxy catalogues. These results show that, in the context of this work, the apparent fractal conjecture is correct.Comment: 18 pages, 1 figure, LaTeX. Final version (small changes in the figure plus some references update). Fortran code included with the LaTeX source. To be published in "Fractals

    Equilibration in long-range quantum spin systems from a BBGKY perspective

    Full text link
    The time evolution of \ell-spin reduced density operators is studied for a class of Heisenberg-type quantum spin models with long-range interactions. In the framework of the quantum Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy, we introduce an unconventional representation, different from the usual cluster expansion, which casts the hierarchy into the form of a second-order recursion. This structure suggests a scaling of the expansion coefficients and the corresponding time scales in powers of N1/2N^{1/2} with the system size NN, implying a separation of time scales in the large system limit. For special parameter values and initial conditions, we can show analytically that closing the BBGKY hierarchy by neglecting \ell-spin correlations does never lead to equilibration, but gives rise to quasi-periodic time evolution with at most /2\ell/2 independent frequencies. Moreover, for the same special parameter values and in the large-NN limit, we solve the complete recursion relation (the full BBGKY hierarchy), observing a superexponential decay to equilibrium in rescaled time τ=tN1/2\tau=tN^{-1/2}.Comment: 3 figure

    Developing Business Acumen in Chinese Business School Graduates

    Get PDF
    This study assessed the importance of knowledge, skills, abilities (i.e., KSAs) and competencies for managerial success in China’s market economy. Business students at a major Chinese university were surveyed over a five year period, initially in 2001 and later in 2006, five years after China’s entry into the World Trade Organization (WTO). Using Partial Least Squares (PLS), the explained variances in business acumen and social motivation skills were higher after China’s WTO entry. The results were reversed for communication skills. The results confirmed the predictive relevance of entrepreneurial behavior and adaptability in the model. Overall, the results suggest an enhanced appreciation for these KSAs after China’s WTO entry

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    A combinatorial approach to knot recognition

    Full text link
    This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition
    corecore