1,059 research outputs found

    Stabilization and control system power sensitivity study

    Get PDF
    Stabilization and control system sensitivity to power-off failure rate studied by simulated missions using block power switchin

    Writing and Reading antiferromagnetic Mn2_2Au: N\'eel spin-orbit torques and large anisotropic magnetoresistance

    Get PDF
    Antiferromagnets are magnetically ordered materials which exhibit no net moment and thus are insensitive to magnetic fields. Antiferromagnetic spintronics aims to take advantage of this insensitivity for enhanced stability, while at the same time active manipulation up to the natural THz dynamic speeds of antiferromagnets is possible, thus combining exceptional storage density and ultra-fast switching. However, the active manipulation and read-out of the N\'eel vector (staggered moment) orientation is challenging. Recent predictions have opened up a path based on a new spin-orbit torque, which couples directly to the N\'eel order parameter. This N\'eel spin-orbit torque was first experimentally demonstrated in a pioneering work using semimetallic CuMnAs. Here we demonstrate for Mn2_2Au, a good conductor with a high ordering temperature suitable for applications, reliable and reproducible switching using current pulses and readout by magnetoresistance measurements. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6\simeq 6~%\% is reproduced by ab initio transport calculations.Comment: 5 pages, 4 figure

    Late glacial palaeoclimate investigations at King Arthur’s Cave and Sun Hole Cave.

    Get PDF
    King Arthur’s Cave (Wye Valley) and Sun Hole Cave (Cheddar Gorge) currently provide the earliest dates for a human presence in the British Isles after the Last Glacial Maximum. The earliest phase of activity at these sites has been dated to c. 15.2 to 14.6 thousand years cal. BP, which spans the onset of the Late Glacial Interstadial, a major global climate transition characterised by rapidly warming temperatures. Here we present stable isotope data from horse (Equus ferus) teeth found in the zooarchaeological assemblages at the sites. We also report two new radiocarbon dates on specimens from King Arthur’s Cave. The Equus tooth enamel provides a record of climatic conditions during the animals’ tooth formation. Evidence of human modification of the teeth (cut marks and fractures) chronologically tie these palaeoclimatic records to the earliest post-LGM archaeology at the two sites, thus informing on the climatic and environmental context under which human activity in these areas took place. Results indicate that people were present at the two sites during a period of climatic warming, with temperatures perhaps only marginally colder than present day conditions. However, suboptimal environmental conditions are suggested and may indicate changing vegetation dynamics within the local landscape

    Elastic behavior in Contact Dynamics of rigid particles

    Full text link
    The systematic errors due to the practical implementation of the Contact Dynamics method for simulation of dense granular media are examined. It is shown that, using the usual iterative solver to simulate a chain of rigid particles, effective elasticity and sound propagation with a finite velocity occur. The characteristics of these phenomena are investigated analytically and numerically in order to assess the limits of applicability of this simulation method and to compare it with soft particle molecular dynamics.Comment: submitted to PRE, 7 pages, 6 figure

    Entropy production and fluctuation theorems under feedback control: the molecular refrigerator model revisited

    Full text link
    We revisit the model of a Brownian particle in a heat bath submitted to an actively controlled force proportional to the velocity that leads to thermal noise reduction (cold damping). We investigate the influence of the continuous feedback on the fluctuations of the total entropy production and show that the explicit expression of the detailed fluctuation theorem involves different dynamics and observables in the forward and backward processes. As an illustration, we study the analytically solvable case of a harmonic oscillator and calculate the characteristic function of the entropy production in a nonequilibrium steady state. We then determine the corresponding large deviation function which results from an unusual interplay between 'boundary' and 'bulk' contributions.Comment: 16 pages, 5 figures. References 9,10,13,14,15 added. A few changes in the text. Accepted for publication in J. Stat. Mec

    Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

    Full text link
    Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-P\'erot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.Comment: 18 pages, 10 figure

    Radiative capture of protons by deuterons

    Get PDF
    The differential cross section for radiative capture of protons by deuterons is calculated using different realistic NN interactions. We compare our results with the available experimental data below Ex=20MeVE_x = 20 MeV. Excellent agreement is found when taking into account meson exchange currents, dipole and quadrupole contributions, and the full initial state interaction. There is only a small difference between the magnitudes of the cross sections for the different potentials considered. The angular distributions, however, are practically potential independent.Comment: 4 pages (twocolumn), 4 postscript figures included, submitted for publication, revised versio

    Improved liquid chromatographic method for determination of carotenoids in carrot

    Get PDF
    Carotenoids are a large class of plant metabolites with a function of either essential nutrients or health promoting compounds for humans. Carrot root is a well-known and significant source of dietary carotenoids, mainly: α- and ÎČ-carotene, lutein and lycopene. These pigments are the main carotenoids separated and quantified routinely by HPLC analysis. However, little is known about minor carotenoids, carotenoid esters and the carotenoids present in leaves despite their potential interest in metabolic and physiological studies. Previous works used C-18 columns but these stationary phases provide a poor resolution of structurally similar compounds and geometrical isomers. In recent years, C-30 columns have been developed and successfully applied at the separation of carotenoids from various plant materials, the number of resolved carotenoids being significantly improved. Based on literature procedures, we have developed a HPLC-DAD method with a C-30 column, adapted to the quantification of carotenoid compounds from carrot roots and leaves. A simple and rapid extraction method was optimized for both these types of samples on a panel of 5 genotypes displaying distinct root colours (different carotenoid composition and contents). Carotenoids from roots were separated in 23 minutes while carotenoids and chlorophylls from leaves were separated in 42 minutes. Compounds were identified according to their retention time and UV-visible spectrum in comparison with authentic standards (analysed individually and in combination, in the same conditions), or with data from literature, when standards were unavailable. Results showed that carrot root exhibited a simple profile with only 1 to 3 main carotenoids whereas a more complex composition was noticed in leaves, containing both identified and unidentified carotenoids and chlorophylls. Moreover, the composition was quite conservative for leaves but depended on the genotype for roots

    Probing Nucleon Strangeness with Neutrinos: Nuclear Model Dependences

    Get PDF
    The extraction of the nucleon's strangeness axial charge, Delta_s, from inclusive, quasielastic neutral current neutrino cross sections is studied within the framework of the plane-wave impulse approximation. We find that the value of Delta_s can depend significantly on the choice of nuclear model used in analyzing the quasielastic cross section. This model-dependence may be reduced by one order of magnitude when Delta_s is extracted from the ratio of total proton to neutron yields. We apply this analysis to the interpretation of low-energy neutrino cross sections and arrive at a nuclear theory uncertainty of plus/minus 0.03 on the value of Delta_s expected to be determined from the ratio of proton and neutron yields measured by the LSND collaboration. This error compares favorably with estimates of the SU(3)-breaking uncertainty in the value of Delta_s extracted from inclusive, polarized deep-inelastic structure function measurements. We also point out several general features of the quasielastic neutral current neutrino cross section and compare them with the analogous features in inclusive, quasielastic electron scattering.Comment: 40 pages (including 11 postscript figures), uses REVTeX and epsfig.st
    • 

    corecore