16 research outputs found

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    A wearable bluetooth LE sensor for patient monitoring during MRI scans

    No full text
    This paper presents a working prototype of a wearable patient monitoring device capable of recording the heart rate, blood oxygen saturation, surface temperature and humidity during an magnetic resonance imaging (MRI) experiment. The measured values are transmitted via Bluetooth low energy (LE) and displayed in real time on a smartphone on the outside of the MRI room. During 7 MRI image acquisitions of at least 1 min and a total duration of 25 min no Bluetooth data packets were lost. The raw measurements of the light intensity for the photoplethysmogram based heart rate measurement shows an increased noise floor by 50 LSB (least significant bit) during the MRI operation, whereas the temperature and humidity readings are unaffected. The device itself creates a magnetic resonance (MR) signal loss with a radius of 14 mm around the device surface and shows no significant increase in image noise of an acquired MRI image due to its radio frequency activity. This enables continuous and unobtrusive patient monitoring during MRI scans

    Detector clothes for MRI: A wearable array receiver based on liquid metal in elastic tubes

    Get PDF
    In modern magnetic resonance imaging, signal detection is performed by dense arrays of radiofrequency resonators. Tight-fitting arrays boost the sensitivity and speed of imaging. However, current devices are rigid and cage-like at the expense of patient comfort. They also constrain posture, limiting the examination of joints. For better ergonomics and versatility, detectors should be flexible, adapt to individual anatomy, and follow posture. Towards this goal, the present work proposes a novel design based on resonators formed by liquid metal in polymer tubes. Textile integration creates lightweight, elastic devices that are worn like pieces of clothing. A liquid-metal array tailored to the human knee is shown to deliver competitive image quality while self-adapting to individual anatomy and adding the ability to image flexion of the joint. Relative to other options for stretchable conductors, liquid metal in elastic tubes stands out by reconciling excellent electrical and mechanical properties with ease of manufacturing.ISSN:2045-232

    A reconfigurable platform for magnetic resonance data acquisition and processing

    No full text
    Developments in magnetic resonance imaging (MRI) in the last decades show a trend towards a growing number of array coils and an increasing use of a wide variety of sensors. Associated cabling and safety issues have been addressed by moving data acquisition closer to the coil. However, with the increasing number of radio-frequency (RF) channels and trend towards higher acquisition duty-cycles, the data amount is growing, which poses challenges for throughput and data handling. As it is becoming a limitation, early compression and preprocessing is becoming ever more important. Additionally, sensors deliver diverse data, which require distinct and often low-latency processing for run-time updates of scanner operation. To address these challenges, we propose the transition to reconfigurable hardware with an application tailored assembly of interfaces and real-time processing resources. We present an integrated solution based on a system-on-chip (SoC), which offers sufficient throughput and hardware-based parallel processing power for very challenging applications. It is equipped with fiber-optical modules serving as versatile interfaces for modular systems with in-field operation. We demonstrate the utility of the platform on the example of concurrent imaging and field sensing with hardware-based coil compression and trajectory extraction. The preprocessed data are then used in expanded encoding model based image reconstruction of single-shot and segmented spirals as used in time-series and anatomical imaging respectively

    A reconfigurable platform for magnetic resonance data acquisition and processing

    Full text link
    Developments in magnetic resonance imaging (MRI) in the last decades show a trend towards a growing number of array coils and an increasing use of a wide variety of sensors. Associated cabling and safety issues have been addressed by moving data acquisition closer to the coil. However, with the increasing number of radio-frequency (RF) channels and trend towards higher acquisition duty-cycles, the data amount is growing, which poses challenges for throughput and data handling. As it is becoming a limitation, early compression and preprocessing is becoming ever more important. Additionally, sensors deliver diverse data, which require distinct and often low-latency processing for run-time updates of scanner operation. To address these challenges, we propose the transition to reconfigurable hardware with an application tailored assembly of interfaces and real-time processing resources. We present an integrated solution based on a system-on-chip (SoC), which offers sufficient throughput and hardware-based parallel processing power for very challenging applications. It is equipped with fiber-optical modules serving as versatile interfaces for modular systems with in-field operation. We demonstrate the utility of the platform on the example of concurrent imaging and field sensing with hardware-based coil compression and trajectory extraction. The preprocessed data are then used in expanded encoding model based image reconstruction of single-shot and segmented spirals as used in time-series and anatomical imaging respectively

    Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time

    Full text link
    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent

    An In-Bore Receiver for Magnetic Resonance Imaging

    Full text link
    In magnetic resonance imaging, the use of array detection and the number of detector elements have seen a steady increase over the past two decades. As a result, per-channel analog connection via long coaxial cable, as commonly used, poses an increasing challenge in terms of handling, safety, and coupling among cables. This situation is exacerbated when complementary recording of radiofrequency transmission or NMR-based magnetic field sensing further add to channel counts. A generic way of addressing this trend is the transition to digital signal transmission, enabled by digitization and first-level digital processing close to detector coils and sensors in the magnet bore. The foremost challenge that comes with this approach is to achieve high dynamic range, linearity, and phase stability despite interference by strong static, audiofrequency, and radiofrequency fields. The present work reports implementation of a 16-channel in-bore receiver, performing signal digitization and processing with subsequent optical transmission over fiber. Along with descriptions of the system design and construction, performance evaluation is reported. The resulting device is fully MRI compatible providing practically equal performance and signal quality compared to state-of-the-art RF digitizers operating outside the magnet. Its use is demonstrated by examples of head imaging and magnetic field recording
    corecore