150 research outputs found

    Genome-wide association meta-analysis identifies 29 new acne susceptibility loci

    Get PDF

    Triangulating molecular evidence to prioritize candidate causal genes at established atopic dermatitis loci

    Get PDF
    GWASs for atopic dermatitis have identified 25 reproducible loci. We attempt to prioritize the candidate causal genes at these loci using extensive molecular resources compiled into a bioinformatics pipeline. We identified a list of 103 molecular resources for atopic dermatitis etiology, including expression, protein, and DNA methylation quantitative trait loci datasets in the skin or immune-relevant tissues, which were tested for overlap with GWAS signals. This was combined with functional annotation using regulatory variant prediction and features such as promoter‒enhancer interactions, expression studies, and variant fine mapping. For each gene at each locus, we condensed the evidence into a prioritization score. Across the investigated loci, we detected significant enrichment of genes with adaptive immune regulatory function and epidermal barrier formation among the top-prioritized genes. At eight loci, we were able to prioritize a single candidate gene (IL6R, ADO, PRR5L, IL7R, ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less familiar candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). Our analysis provides support for previously implicated genes at several atopic dermatitis GWAS loci as well as evidence for plausible additional candidates at others, which may represent potential targets for drug discovery

    Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation

    Get PDF
    DNA methylation quantitative trait locus (mQTL) analyses on 32,851 participants identify genetic variants associated with DNA methylation at 420,509 sites in blood, resulting in a database of >270,000 independent mQTLs. Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.Peer reviewe

    Variability of gene expression profiles in human blood and lymphoblastoid cell lines

    Get PDF
    BACKGROUND: Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets. RESULTS: Gene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range rho = 0.90-1.00). The PAXgene samples showed a decrease in the number of expressed genes (P < 1*10(-16)) with higher variability (P < 1*10(-16)) compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (rho = 0.83; rho = 0.79) of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (rho = 0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs. CONCLUSION: Gene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies

    An interactive genome browser of association results from the UK10K cohorts project.

    Get PDF
    UNLABELLED: High-throughput sequencing technologies survey genetic variation at genome scale and are increasingly used to study the contribution of rare and low-frequency genetic variants to human traits. As part of the Cohorts arm of the UK10K project, genetic variants called from low-read depth (average 7×) whole genome sequencing of 3621 cohort individuals were analysed for statistical associations with 64 different phenotypic traits of biomedical importance. Here, we describe a novel genome browser based on the Biodalliance platform developed to provide interactive access to the association results of the project. AVAILABILITY AND IMPLEMENTATION: The browser is available at http://www.uk10k.org/dalliance.html. Source code for the Biodalliance platform is available under a BSD license from http://github.com/dasmoth/dalliance, and for the LD-display plugin and backend from http://github.com/dasmoth/ldserv

    Systematic identification of genetic influences on methylation across the human life course

    Get PDF
    BACKGROUND: The influence of genetic variation on complex diseases is potentially mediated through a range of highly dynamic epigenetic processes exhibiting temporal variation during development and later life. Here we present a catalogue of the genetic influences on DNA methylation (methylation quantitative trait loci (mQTL)) at five different life stages in human blood: children at birth, childhood, adolescence and their mothers during pregnancy and middle age. RESULTS: We show that genetic effects on methylation are highly stable across the life course and that developmental change in the genetic contribution to variation in methylation occurs primarily through increases in environmental or stochastic effects. Though we map a large proportion of the cis-acting genetic variation, a much larger component of genetic effects influencing methylation are acting in trans. However, only 7 % of discovered mQTL are trans-effects, suggesting that the trans component is highly polygenic. Finally, we estimate the contribution of mQTL to variation in complex traits and infer that methylation may have a causal role consistent with an infinitesimal model in which many methylation sites each have a small influence, amounting to a large overall contribution. CONCLUSIONS: DNA methylation contains a significant heritable component that remains consistent across the lifespan. Our results suggest that the genetic component of methylation may have a causal role in complex traits. The database of mQTL presented here provide a rich resource for those interested in investigating the role of methylation in disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0926-z) contains supplementary material, which is available to authorized users

    The Effect of Pre-Analytical Conditions on Blood Metabolomics in Epidemiological Studies

    Get PDF
    Serum and plasma are commonly used in metabolomic-epidemiology studies. Their metabolome is susceptible to differences in pre-analytical conditions and the impact of this is unclear. Participant-matched EDTA-plasma and serum samples were collected from 37 non-fasting volunteers and profiled using a targeted nuclear magnetic resonance (NMR) metabolomics platform (n = 151 traits). Correlations and differences in mean of metabolite concentrations were compared between reference (pre-storage: 4 °C, 1.5 h; post-storage: no buffer addition delay or NMR analysis delay) and four pre-storage blood processing conditions, where samples were incubated at (i) 4 °C, 24 h; (ii) 4 °C, 48 h; (iii) 21 °C, 24 h; and (iv) 21 °C, 48 h, before centrifugation; and two post-storage sample processing conditions in which samples thawed overnight (i) then left for 24 h before addition of sodium buffer followed by immediate NMR analysis; and (ii) addition of sodium buffer, then left for 24 h before NMR profiling. We used multilevel linear regression models and Spearman’s rank correlation coefficients to analyse the data. Most metabolic traits had high rank correlation and minimal differences in mean concentrations between samples subjected to reference and the different conditions tested, that may commonly occur in studies. However, glycolysis metabolites, histidine, acetate and diacylglycerol concentrations may be compromised and this could bias results in association/causal analyses
    corecore