3 research outputs found

    ISO SWS Observations of H II Regions in NGC 6822 and I ZW 36: Sulfur Abundances and Temperature Fluctuations

    Get PDF
    We report ISO SWS infrared spectroscopy of the H II region Hubble V in NGC 6822 and the blue compact dwarf galaxy I Zw 36. Observations of Br alpha, [S III] at 18.7 and 33.5 microns, and [S IV] at 10.5 microns are used to determine ionic sulfur abundances in these H II regions. There is relatively good agreement between our observations and predictions of S^+3 abundances based on photoionization calculations, although there is an offset in the sense that the models overpredict the S^+3 abundances. We emphasize a need for more observations of this type in order to place nebular sulfur abundance determinations on firmer ground. The S/O ratios derived using the ISO observations in combination with optical data are consistent with values of S/O, derived from optical measurements of other metal-poor galaxies. We present a new formalism for the simultaneous determination of the temperature, temperature fluctuations, and abundances in a nebula, given a mix of optical and infrared observed line ratios. The uncertainties in our ISO measurements and the lack of observations of [S III] lambda 9532 or lambda 9069 do not allow an accurate determination of the amplitude of temperature fluctuations for Hubble V and I Zw 36. Finally, using synthetic data, we illustrate the diagnostic power and limitations of our new method.Comment: 32 Pages total, including 6 encapsulated postscript figures (one with two parts). Accepted for Publication in the 20 Dec 2002 Ap

    Galaxy-Quasar correlations between APM galaxies and Hamburg-ESO QSOs

    Full text link
    We detect angular galaxy-QSO cross-correlations between the APM Galaxy Catalogue and a preliminary release (consisting of roughly half of the anticipated final catalogue) of the Hamburg-ESO Catalogue of Bright QSOs as a function of source QSO redshift using multiple cross-correlation estimators. Each of the estimators yield very similar results, implying that the APM catalogue and the Hamburg-ESO survey are both fair samples of the respective true galaxy and QSO populations. Though the signal matches the expectations of gravitational lensing qualitatively, the strength of the measured cross-correlation signal is significantly greater than the CDM models of lensing by large scale structure would suggest. This same disagreement between models and observation has been found in several earlier studies. We estimate our confidence in the correlation detections versus redshift by generating 1000 random realizations of the Hamburg-ESO QSO survey: We detect physical associations between galaxies and low-redshift QSOs at 99% confidence and detect lensing associations at roughly 95% confidence for QSOs with redshifts between 0.6 and 1. Control cross-correlations between Galactic stars and QSOs show no signal. Finally, the overdensities (underdensities) of galaxies near QSO positions relative to those lying roughly 135 - 150 arcmin away are uncorrelated with differences in Galactic extinction between the two regions, implying that Galactic dust is not significantly affecting the QSO sample.Comment: 35 pages total, including 9 figures. Accepted by the Astrophysical Journa
    corecore