7 research outputs found
Nanoscale structuring of tungsten tip yields most coherent electron point-source
This report demonstrates the most spatially-coherent electron source ever
reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a
virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5
V. The nanotips under study were crafted using a spatially-confined,
field-assisted nitrogen etch which removes material from the periphery of the
tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio
source. The coherence properties are deduced from holographic measurements in a
low-energy electron point source microscope with a carbon nanotube bundle as
sample. Using the virtual source size and emission current the brightness
normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2
Anisotropic superconductivity of niobium based on its response to non-magnetic disorder
Niobium is one of the most studied superconductors, both theoretically and
experimentally. It is tremendously important for applications, and it has the
highest superconducting transition temperature, K, of all pure
metals. In addition to power applications in alloys, pure niobium is used for
sensitive magneto-sensing, radio-frequency cavities, and, more recently, as
circuit metallization layers in superconducting qubits. A detailed
understanding of its electronic and superconducting structure, especially its
normal and superconducting state anisotropies, is crucial for mitigating the
loss of quantum coherence in such devices. Recently, a microscopic theory of
the anisotropic properties of niobium with the disorder was put forward. To
verify theoretical predictions, we studied the effect of disorder produced by
3.5 MeV proton irradiation of thin Nb films grown by the same team and using
the same protocols as those used in transmon qubits. By measuring the
superconducting transition temperature and upper critical fields, we show a
clear suppression of by potential (non-magnetic) scattering, which is
directly related to the anisotropic order parameter. We obtain a very close
quantitative agreement between the theory and the experiment
Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium Surface Encapsulation
We present a novel transmon qubit fabrication technique that yields
systematic improvements in T coherence times. We fabricate devices using an
encapsulation strategy that involves passivating the surface of niobium and
thereby preventing the formation of its lossy surface oxide. By maintaining the
same superconducting metal and only varying the surface structure, this
comparative investigation examining different capping materials and film
substrates across different qubit foundries definitively demonstrates the
detrimental impact that niobium oxides have on the coherence times of
superconducting qubits, compared to native oxides of tantalum, aluminum or
titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T
coherence times 2 to 5 times longer than baseline niobium qubit devices with
native niobium oxides. When capping niobium with tantalum, we obtain median
qubit lifetimes above 200 microseconds. Our comparative structural and chemical
analysis suggests that amorphous niobium suboxides may induce higher losses.
These results are in line with high-accuracy measurements of the niobium oxide
loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF)
cavities. This new surface encapsulation strategy enables further reduction of
dielectric losses via passivation with ambient-stable materials, while
preserving fabrication and scalable manufacturability thanks to the
compatibility with silicon processes
Spectroscopic signatures of localization with interacting photons in superconducting qubits
Summarization: Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter. © 2017, American Association for the Advancement of Science.Παρουσιάστηκε στο: Scienc
Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation
Abstract We present a transmon qubit fabrication technique that yields systematic improvements in T 1 relaxation times. We encapsulate the surface of niobium and prevent the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface, this comparative investigation examining different capping materials, such as tantalum, aluminum, titanium nitride, and gold, as well as substrates across different qubit foundries demonstrates the detrimental impact that niobium oxides have on coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T 1 relaxation times 2–5 times longer than baseline qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 300 μs, with maximum values up to 600 μs. Our comparative structural and chemical analysis provides insight into why amorphous niobium oxides may induce higher losses compared to other amorphous oxides