152 research outputs found

    Molecular Phylogenetics of the Genus Neoconocephalus (Orthoptera, Tettigoniidae) and the Evolution of Temperate Life Histories

    Get PDF
    BACKGROUND:The katydid genus Neoconocephalus (25+ species) has a prominent acoustic communication system and occurs in large parts of the Neotropics and Nearctic. This group has been subject of numerous behavioral, physiological, and evolutionary studies of its acoustic communication system. Two distinct life histories occur in this group: The tropical life history incorporates multiple generations/year and direct egg development without environmental triggers. Temperate life history is characterized by overwintering in the egg stage, cold trigger of egg development, and one generation/year. This study reconstructs the phylogenetic relationships within the genus to (1) determine the evolutionary history of the temperate life history, and (2) to support comparative studies of evolutionary and physiological problems in this genus. METHODOLOGY/PRINCIPAL FINDINGS:We used Amplified Fragment Length Polymorphisms (AFLP), and sequences of two nuclear loci and one mitochondrial locus to reconstruct phylogenetic relationships. The analysis included 17 ingroup and two outgroup species. AFLP and mitochondrial data provided resolution at the species level while the two nuclear loci revealed only deeper nodes. The data sets were combined in a super-matrix to estimate a total evidence tree. Seven of the temperate species form a monophyletic group; however, three more temperate species were placed as siblings of tropical species. CONCLUSIONS/SIGNIFICANCE:Our analyses support the reliability of the current taxonomic treatment of the Neoconocephalus fauna of Caribbean, Central, and North America. Ancestral state reconstruction of life history traits was not conclusive, however at least four transitions between life histories occurred among our sample of species. The proposed phylogeny will strengthen conclusions from comparative work in this group

    The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Full text link
    We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal

    Grading of carotid artery stenosis with multidetector-row CT angiography: visual estimation or caliper measurements?

    Get PDF
    To assess the optimal method for grading carotid artery stenosis with computed tomographic angiography (CTA), we compared visual estimation to caliper measurements, and determined inter-observer variability and agreement relative to digital subtraction angiography (DSA). We included 46 patients with symptomatic carotid stenosis for whom CTA and DSA of 55 carotids was available. Stenosis quantification by CTA using visual estimation (CTAVE) (method 1) was compared with caliper measurements using subjectively optimized wide window settings (method 2) or predefined contrast-dependent narrow window settings (method 3). Measurements were independently performed by two radiologists and two residents. To determine accuracy and inter-observer variability, we calculated linear weighted kappa, performed a Bland-Altman analysis and calculated mean difference (bias) and standard deviation of differences (SDD). For inter-observer variability, kappa analysis was “very good” (0.85) for expert observers using CTAVE compared with “good” (0.61) for experts using DSA. Compared with DSA, method 1 led to overestimation (bias 5.8–8.0%, SDD 10.6–14.4), method 3 led to underestimation (bias −6.3 to −3.0%, SDD 13.0–18.1). Measurement variability between DSA and visual estimation on CTA (SDD 11.5) is close to the inter-observer variability of repeated measurements on DSA that we found in this study (SDD 11.6). For CTA of carotids, stenosis grading based on visual estimation provides better agreement to grading by DSA compared with stenosis grading based on caliper measurements

    Soluble NgR Fusion Protein Modulates the Proliferation of Neural Progenitor Cells via the Notch Pathway

    Get PDF
    NogoA, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein are CNS myelin molecules that bind to the neuronal Nogo-66 receptor (NgR) and inhibit axon growth. The NgR antagonist, soluble NgR1-Fc protein (sNgR-Fc), facilitates axon regeneration by neutralizing the inhibitory effects of myelin proteins in experimental models of CNS injury. Here we aim to investigate the effect of sNgR-Fc on the proliferation of neural progenitor cells (NPCs). The hippocampus cells of embryonic rats were isolated and cultured in vitro. The expression of nestin, βIII-Tubulin, GFAP and Nogo-A on these cells was observed using immunocytochemistry. In order to investigate the effect on proliferation of NPCs, sNgR-Fc, MAG-Fc chimera and Notch1 blocker were added respectively. The total cell number for the proliferated NPCs was counted. BrdU was applied and the rate of proliferating cells was examined. The level of Notch1 was analyzed using Western blotting. We identified that NogoA is expressed in NPCs. sNgR-Fc significantly enhanced the proliferation of NPCs in vitro as indicated by BrdU labeling and total cell count. This proliferation effect was abolished by the administration of MAG suggesting specificity. In addition, we demonstrate that sNgR-Fc is a potent activator for Notch1 and Notch1 antagonist reversed the effect of sNgR-Fc on NPC proliferation. Our results suggest that sNgR-Fc may modulate Nogo activity to induce NPC proliferation via the Notch pathway

    An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides

    Get PDF
    BACKGROUND: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. METHODOLOGY/PRINCIPAL FINDINGS: We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few alpha,alpha disubstituted, N-methyl and alpha-hydroxy derivatives, but no beta-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides

    Megascopic Quantum Phenomena. A Critical Study of Physical Interpretations

    Full text link
    A megascopic revalidation is offered providing responses and resolutions of current inconsistencies and existing contradictions in present-day quantum theory. As the core of this study we present an independent proof of the Goldstone theorem for a quantum field formulation of molecules and solids. Along with phonons two types of new quasiparticles appear: rotons and translons. In full analogy with Lorentz covariance, combining space and time coordinates, a new covariance is necessary, binding together the internal and external degrees of freedom, without explicitly separating the centre-of-mass, which normally applies in both classical and quantum formulations. The generally accepted view regarding the lack of a simple correspondence between the Goldstone modes and broken symmetries, has significant consequences: an ambiguous BCS theory as well as a subsequent Higgs mechanism. The application of the archetype of the classical spontaneous symmetry breaking, i.e. the Mexican hat, as compared to standard quantum relations, i.e. the Jahn-Teller effect, superconductivity or the Higgs mechanism, becomes a disparity. In short, symmetry broken states have a microscopic causal origin, but transitions between them have a teleological component. The different treatments of the problem of the centre of gravity in quantum mechanics and in field theories imply a second type of Bohr complementarity on the many-body level opening the door for megascopic representations of all basic microscopic quantum axioms with further readings for teleonomic megascopic quantum phenomena, which have no microscopic rationale: isomeric transitions, Jahn-Teller effect, chemical reactions, Einstein-de Haas effect, superconductivity-superfluidity, and brittle fracture.Comment: 117 pages, 17 sections, final revised version from 20 May 2019 but uploaded after the DOI was know

    Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    Get PDF
    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies
    corecore