13 research outputs found

    Chiton radula feeding demonstrated by a fundamental zipper pulling mechanism

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P6

    Biological Organisms as End Effectors

    Full text link
    In robotics, an end effector is a device at the end of a robotic arm designed to interact with the environment. Effectively, it serves as the hand of the robot, carrying out tasks on behalf of humans. But could we turn this concept on its head and consider using living organisms themselves as end-effectors? This paper introduces a novel idea of using whole living organisms as end effectors for robotics. We showcase this by demonstrating that pill bugs and chitons -- types of small, harmless creatures -- can be utilized as functional grippers. Crucially, this method does not harm these creatures, enabling their release back into nature after use. How this concept may be expanded to other organisms and applications is also discussed.Comment: 11 pages, 8 figure

    Three-dimensional architecture and assembly mechanism of the egg-shaped shell in testate amoeba Paulinella micropora

    Get PDF
    Unicellular euglyphid testate amoeba Paulinella micropora with filose pseudopodia secrete approximately 50 siliceous scales into the extracellular template-free space to construct a shell isomorphic to that of its mother cell. This shell-constructing behavior is analogous to building a house with bricks, and a complex mechanism is expected to be involved for a single-celled amoeba to achieve such a phenomenon; however, the three-dimensional (3D) structure of the shell and its assembly in P. micropora are still unknown. In this study, we aimed to clarify the positional relationship between the cytoplasmic and extracellular scales and the structure of the egg-shaped shell in P. micropora during shell construction using focused ion beam scanning electron microscopy (FIB-SEM). 3D reconstruction revealed an extensive invasion of the electron-dense cytoplasm between the long sides of the positioned and stacked scales, which was predicted to be mediated by actin filament extension. To investigate the architecture of the shell of P. micropora, each scale was individually segmented, and the position of its centroid was plotted. The scales were arranged in a left-handed, single-circular ellipse in a twisted arrangement. In addition, we 3D printed individual scales and assembled them, revealing new features of the shell assembly mechanism of P. micropora. Our results indicate that the shell of P. micropora forms an egg shape by the regular stacking of precisely designed scales, and that the cytoskeleton is involved in the construction process

    Differential Binding of Three Major Human ADAR Isoforms to Coding and Long Non-Coding Transcripts

    No full text
    RNA editing by deamination of adenosine to inosine is an evolutionarily conserved process involved in many cellular pathways, from alternative splicing to miRNA targeting. In humans, it is carried out by no less than three major adenosine deaminases acting on RNA (ADARs): ADAR1-p150, ADAR1-p110, and ADAR2. However, the first two derive from alternative splicing, so that it is currently impossible to delete ADAR1-p110 without also knocking out ADAR1-p150 expression. Furthermore, the expression levels of ADARs varies wildly among cell types, and no study has systematically explored the effect of each of these isoforms on the cell transcriptome. In this study, RNA immunoprecipitation (RIP)-sequencing on overexpressed ADAR isoforms tagged with green fluorescent protein (GFP) shows that each ADAR is associated with a specific set of differentially expressed genes, and that they each bind to distinct set of RNA targets. Our results show a good overlap with known edited transcripts, establishing RIP-seq as a valid method for the investigation of RNA editing biology

    Chiton radula feeding demonstrated by a fundamental zipper pulling mechanism

    No full text
    corecore