127 research outputs found

    Requirement of Cognate CD4+ T-Cell Recognition for the Regulation of Allospecific CTL by Human CD4+CD127−CD25+FOXP3+ Cells Generated in MLR

    Get PDF
    Although immunoregulation of alloreactive human CTLs has been described, the direct influence of CD4+ Tregs on CD8+ cytotoxicity and the interactive mechanisms have not been well clarified. Therefore, human CD4+CD127−CD25+FOXP3+ Tregs were generated in MLR, immunoselected and their allospecific regulatory functions and associated mechanisms were then tested using modified 51Chromium release assays (Micro-CML), MLRs and CFSE-based multi-fluorochrome flow cytometry proliferation assays. It was observed that increased numbers of CD4+CD127−CD25+FOXP3+ cells were generated after a 7 day MLR. After immunoselection for CD4+CD127−CD25+ cells, they were designated as MLR-Tregs. When added as third component modulators, MLR-Tregs inhibited the alloreactive proliferation of autologous PBMC in a concentration dependent manner. The inhibition was quasi-antigen specific, in that the inhibition was non-specific at higher MLR-Treg modulator doses, but non-specificity disappeared with lower numbers at which specific inhibition was still significant. When tested in micro-CML assays CTL inhibition occurred with PBMC and purified CD8+ responders. However, antigen specificity of CTL inhibition was observed only with unpurified PBMC responders and not with purified CD8+ responders or even with CD8+ responders plus Non-T “APC”. However, allospecificity of CTL regulation was restored when autologous purified CD4+ T cells were added to the CD8+ responders. Proliferation of CD8+ cells was suppressed by MLR-Tregs in the presence or absence of IL-2. Inhibition by MLR-Tregs was mediated through down-regulation of intracellular perforin, granzyme B and membrane-bound CD25 molecules on the responding CD8+ cells. Therefore, it was concluded that human CD4+CD127−CD25+FOXP3+ MLR-Tregs down-regulate alloreactive cytotoxic responses. Regulatory allospecificity, however, requires the presence of cognate responding CD4+ T cells. CD8+ CTL regulatory mechanisms include impaired proliferation, reduced expression of cytolytic molecules and CD25+ activation epitopes

    CD4+CD25+FOXP3+ regulatory T cells: a potential “armor” to shield “transplanted allografts” in the war against ischemia reperfusion injury

    Get PDF
    Despite the advances in therapeutic interventions, solid organ transplantation (SOT) remains the “gold standard” treatment for patients with end-stage organ failure. Recently, vascularized composite allotransplantation (VCA) has reemerged as a feasible treatment option for patients with complex composite tissue defects. In both SOT and VCA, ischemia reperfusion injury (IRI) is inevitable and is a predominant factor that can adversely affect transplant outcome by potentiating early graft dysfunction and/or graft rejection. Restoration of oxygenated blood supply to an organ which was previously hypoxic or ischemic for a period of time triggers cellular oxidative stress, production of both, pro-inflammatory cytokines and chemokines, infiltration of innate immune cells and amplifies adaptive alloimmune responses in the affected allograft. Currently, Food and Drug Administration (FDA) approved drugs for the treatment of IRI are unavailable, therefore an efficacious therapeutic modality to prevent, reduce and/or alleviate allograft damages caused by IRI induced inflammation is warranted to achieve the best-possible transplant outcome among recipients. The tolerogenic capacity of CD4+CD25+FOXP3+ regulatory T cells (Tregs), have been extensively studied in the context of transplant rejection, autoimmunity, and cancer. It was not until recently that Tregs have been recognized as a potential cell therapeutic candidate to be exploited for the prevention and/or treatment of IRI, owing to their immunomodulatory potential. Tregs can mitigate cellular oxidative stress, produce anti-inflammatory cytokines, promote wound healing, and tissue repair and prevent the infiltration of pro-inflammatory immune cells in injured tissues. By using strategic approaches to increase the number of Tregs and to promote targeted delivery, the outcome of SOT and VCA can be improved. This review focuses on two sections: (a) the therapeutic potential of Tregs in preventing and mitigating IRI in the context of SOT and VCA and (b) novel strategies on how Tregs could be utilized for the prevention and/or treatment of IRI

    Negative mood reverses devaluation of goal-directed drug-seeking favouring an incentive learning account of drug dependence.

    Get PDF
    BACKGROUND: Two theories explain how negative mood primes smoking behaviour. The stimulus–response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to produce that outcome. OBJECTIVES: One differential prediction is that whereas the incentive learning account anticipates that negative mood induction could augment a novel tobacco-seeking response in an extinction test, the S-R account could not explain this effect because the extinction test prevents S-R learning by omitting experience of the reinforcer. METHODS: To test this, overnight-deprived daily smokers (n = 44) acquired two instrumental responses for tobacco and chocolate points, respectively, before smoking to satiety. Half then received negative mood induction to raise the expected value of tobacco, opposing satiety, whilst the remainder received positive mood induction. Finally, a choice between tobacco and chocolate was measured in extinction to test whether negative mood could augment tobacco choice, opposing satiety, in the absence of direct experience of tobacco reinforcement. RESULTS: Negative mood induction not only abolished the devaluation of tobacco choice, but participants with a significant increase in negative mood increased their tobacco choice in extinction, despite satiety. CONCLUSIONS: These findings suggest that negative mood augments drug-seeking by raising the expected value of the drug through incentive learning, rather than through automatic S-R control

    Fontan-Associated Dyslipidemia

    Get PDF
    Background Hypocholesterolemia is a marker of liver disease, and patients with a Fontan circulation may have hypocholesterolemia secondary to Fontan-associated liver disease or inflammation. We investigated circulating lipids in adults with a Fontan circulation and assessed the associations with clinical characteristics and adverse events. Methods and Results We enrolled 164 outpatients with a Fontan circulation, aged ≄ 18 years, in the Boston Adult Congenital Heart Disease Biobank and compared them with 81 healthy controls. The outcome was a combined outcome of nonelective cardiovascular hospitalization or death. Participants with a Fontan (median age, 30.3 [interquartile range, 22.8–34.3 years], 42% women) had lower total cholesterol (149.0±30.1 mg/dL versus 190.8±41.4 mg/dL, P\u3c 0.0001), low‐density lipoprotein cholesterol (82.5±25.4 mg/dL versus 102.0±34.7 mg/dL, P\u3c 0.0001), and high‐density lipoprotein cholesterol (42.8±12.2 mg/dL versus 64.1±16.9 mg/dL, P\u3c 0.0001) than controls. In those with a Fontan, high‐density lipoprotein cholesterol was inversely correlated with body mass index (r=−0.30, P\u3c 0.0001), high‐sensitivity C‐reactive protein (r=−0.27, P=0.0006), and alanine aminotransferase (r=−0.18, P=0.02) but not with other liver disease markers. Lower high‐density lipoprotein cholesterol was independently associated with greater hazard for the combined outcome adjusting for age, sex, body mass index, and functional class (hazard ratio [HR] per decrease of 10 mg/dL, 1.37; 95% CI, 1.04–1.81 [P=0.03]). This relationship was attenuated when log high‐sensitivity C‐reactive protein was added to the model (HR, 1.26; 95% CI, 0.95–1.67 [P=0.10]). Total cholesterol, low‐density lipoprotein cholesterol, and triglycerides were not associated with the combined outcome. Conclusions The Fontan circulation is associated with decreased cholesterol levels, and lower high‐density lipoprotein cholesterol is associated with adverse outcomes. This association may be driven by inflammation. Further studies are needed to understand the relationship between the severity of Fontan‐associated liver disease and lipid metabolism

    Differentiation of regulatory myeloid and T-cells from adult human hematopoietic stem cells after allogeneic stimulation

    Get PDF
    IntroductionDonor hematopoietic stem cell (DHSC) infusions are increasingly being studied in transplant patients for tolerance induction.MethodsTo analyze the fate of infused DHSCs in patients, we developed an in vitro culture system utilizing CD34+DHSCs stimulated with irradiated allogeneic cells in cytokine supplemented medium long-term.ResultsFlow cytometric analyses revealed loss of the CD34 marker and an increase in CD33+ myeloid and CD3+ T-cell proportion by 10.4% and 72.7%, respectively, after 21 days in culture. T-cells primarily expressed TcR-αÎČ and were of both CD4+ and CD8+ subsets. Approximately 80% of CD3+ T cells lacked expression of the co-stimulatory receptor CD28. The CD4+ compartment was predominated by CD4+CD25+CD127-FOXP3+ Tregs (>50% CD4+CD127- compartment) with <1% of all leukocytes exhibiting a CD4+CD127+ phenotype. Molecular analyses for T-cell receptor excision circles showed recent and increased numbers of TcR rearrangements in generated T cells over time suggesting de novo differentiation from DHSCs. CD33+ myeloid cells mostly expressed HLA-DR, but lacked expression of co-stimulatory receptors CD80 and CD83. When studied as modulators in primary mixed lymphocyte reactions where the cells used to stimulate the DHSC were used as responders, the DHSC-lines and their purified CD8+, CD4+, CD33+ and linage negative subsets inhibited the responses in a dose-dependent and non-specific fashion. The CD8+ cell-mediated inhibition was due to direct lysis of responder cells.DiscussionExtrapolation of these results into the clinical situation would suggest that DHSC infusions into transplant recipients may generate multiple subsets of donor “chimeric” cells and promote recipient Treg development that could regulate the anti-donor immune response in the periphery. These studies have also indicated that T cell maturation can occur in vitro in response to allogeneic stimulation without the pre-requisite of a thymic-like environment or NOTCH signaling stimulatory cell line

    HLA molecular mismatches and induced donor-specific tolerance in combined living donor kidney and hematopoietic stem cell transplantation

    Get PDF
    IntroductionWe investigated the potential role of HLA molecular mismatches (MM) in achieving stable chimerism, allowing for donor-specific tolerance in patients undergoing combined living donor kidney and hematopoietic stem cell transplantation (HSCT).MethodsAll patients with available DNA samples (N=32) who participated in a phase 2 clinical trial (NCT00498160) where they received an HLA mismatched co-transplantation of living donor kidney and facilitating cell-enriched HSCT were included in this study. High-resolution HLA genotyping data were used to calculate HLA amino acid mismatches (AAMM), Eplet MM, three-dimensional electrostatic mismatch scores (EMS-3D), PIRCHE scores, HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence MM, and KIR ligands MM between the donor and recipient in both directions. HLA MM were analyzed to test for correlation with the development of chimerism, graft vs. host disease (GvHD), de novo DSA, and graft rejection.ResultsFollow-up time of this cohort was 6–13.5 years. Of the 32 patients, 26 developed high-level donor or mixed stable chimerism, followed by complete withdrawal of immunosuppression (IS) in 25 patients. The remaining six of the 32 patients had transient chimerism or no engraftment and were maintained on IS (On-IS). In host versus graft direction, a trend toward higher median number of HLA-DRB1 MM scores was seen in patients On-IS compared to patients with high-level donor/mixed chimerism, using any of the HLA MM modalities; however, initial statistical significance was observed only for the EMS-3D score (0.45 [IQR, 0.30–0.61] vs. 0.24 [IQR, 0.18–0.36], respectively; p=0.036), which was lost when applying the Bonferroni correction. No statistically significant differences between the two groups were observed for AAMM, EMS-3D, Eplet MM, and PIRCHE-II scores calculated in graft versus host direction. No associations were found between development of chimerism and GvHD and non-permissive HLA-DPB1 T-cell epitope group MM, HLA-B leader sequence, and KIR ligands MM.ConclusionOur results suggest an association between HLA-DRB1 molecular mismatches and achieving stable chimerism, particularly when electrostatic quality of the mismatch is considered. The non-permissive HLA-DPB1 T-cell epitope group, HLA-B leader sequence, and KIR ligands MM do not predict chimerism and GvHD in this combined kidney/HSCT transplant patient cohort. Further work is needed to validate our findings.Clinical trial registrationhttps://clinicaltrials.gov/study/NCT00498160, identifier NCT00498160

    Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    Get PDF
    International audienceBackground: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200 ± 40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150 ± 80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicit
    • 

    corecore