23 research outputs found

    Tonic and Phasic Alertness Training: A Novel Behavioral Therapy to Improve Spatial and Non-Spatial Attention in Patients with Hemispatial Neglect

    Get PDF
    Hemispatial neglect is a debilitating disorder marked by a constellation of spatial and non-spatial attention deficits. Patients’ alertness deficits have shown to interact with lateralized attention processes and correspondingly, improving tonic/general alertness as well as phasic/moment-to-moment alertness has shown to ameliorate spatial bias. However, improvements are often short-lived and inconsistent across tasks and patients. In an attempt to more effectively activate alertness mechanisms by exercising both tonic and phasic alertness, we employed a novel version of a continuous performance task (tonic and phasic alertness training, TAPAT). Using a between-subjects longitudinal design and employing sensitive outcome measures of spatial and non-spatial attention, we compared the effects of 9 days of TAPAT (36 min/day) in a group of patients with chronic neglect (N = 12) with a control group of chronic neglect patients (N = 12) who simply waited during the same training period. Compared to the control group, the group trained on TAPAT significantly improved on both spatial and non-spatial measures of attention with many patients failing to exhibit a lateralized attention bias at the end of training. TAPAT was effective for patients with a range of behavioral profiles and lesions, suggesting that its effectiveness may rely on distributed or lower-level attention mechanisms that are largely intact in patients with neglect. In a follow-up experiment, to determine if TAPAT is more effective in improving spatial attention than an active treatment that directly trains spatial attention, we trained three chronic neglect patients on both TAPAT and search training. In all three patients, TAPAT training was more effective in improving spatial attention than search training suggesting that, in chronic neglect, training alertness is a more effective treatment approach than directly training spatial attention

    Association and Dissociation between Detection and Discrimination of Objects of Expertise: Evidence from Visual Search

    No full text
    Expertise in face recognition is characterized by high proficiency in distinguishing between individual faces. However, faces also enjoy an advantage at the early stage of basic-level detection, as demonstrated by efficient visual search for faces among nonface objects. In the present study, we asked (1) whether the face advantage in detection is a unique signature of face expertise, or whether it generalizes to other objects of expertise, and (2) whether expertise in face detection is intrinsically linked to expertise in face individuation. We compared how groups with varying degrees of object and face expertise (typical adults, developmental prosopagnosics [DP], and car experts) search for objects within and outside their domains of expertise (faces, cars, airplanes, and butterflies) among a variable set of object distractors. Across all three groups, search efficiency (indexed by reaction time slopes) was higher for faces and airplanes than for cars and butterflies. Notably, the search slope for car targets was considerably shallower in the car experts than in nonexperts. Although the mean face slope was slightly steeper among the DPs than in the other two groups, most of the DPs’ search slopes were well within the normative range. This pattern of results suggests that expertise in object detection is indeed associated with expertise at the subordinate level, that it is not specific to faces, and that the two types of expertise are distinct facilities. We discuss the potential role of experience in bridging between low-level discriminative features and high-level naturalistic categories

    The functional relevance of visuospatial processing speed across the lifespan

    No full text
    Abstract Visuospatial processing speed underlies several cognitive functions critical for successful completion of everyday tasks, including driving and walking. While it is widely accepted that visuospatial processing speed peaks in early adulthood, performance across the lifespan remains incompletely characterized. Additionally, there remains a lack of paradigms available to assess visuospatial processing speed in unsupervised web-based testing environments. To address these gaps, we developed a novel visuospatial processing speed (VIPS) task adapted from two tests sensitive to visuospatial processing speed declines in older adults, the Useful Field of View paradigm and the PERformance CEntered Portable Test. The VIPS task requires participants to make a central orientation discrimination and complete a simultaneous peripheral visual search task. Data were collected from 86 in-lab volunteers (18–30 years) to compare performance to traditional neuropsychological measures. Consistent with previous literature, performance on the novel VIPS task significantly correlated with measures of selective attention, executive functioning, visual speed, and working memory. An additional 4395 volunteers (12–62 years) were recruited on TestMyBrain.org to establish lifespan trajectories of visuospatial processing speed and associations with functional disability. VIPS task performance peaked in the early 20’s, and steadily decreased such that thresholds doubled in 60-year-olds relative to 20-year-olds (817 ms vs. 412 ms). VIPS task performance significantly correlated with self-reported cognitive functioning deficits broadly across the lifespan but was specifically related to mobility issues in middle-age. These findings have important implications for early detection of cognitive decline and provide insights into potential early intervention targets for younger and middle-aged adults
    corecore