8,137 research outputs found

    Instrumented Lumbar Corpectomy and Spinal Reconstruction Comparing rhBMP-2/Compression-Resistant Matrix, rhBMP-2/Absorbable Collagen Sponge/Ceramic Granules Mixture, and Autograft in Two Different Devices: A Study in Sheep

    Get PDF
    Study Design. Fusion success with rhBMP-2 and autograft in titanium or PEEK corpectomy devices was evaluated in a sheep lumbar corpectomy model. The 6 treatment groups included titanium mesh or PEEK corpectomy devices filled with rhBMP-2 on a compression-resistant matrix (CRM) carrier; rhBMP-2 in a morselized absorbable collagen sponge (ACS) carrier combined with resorbable ceramic granules; and autograft. Objective. The aim of this study was to determine fusion rates associated with 2 different preparations of rhBMP-2 as well as autograft in an instrumented ovine lumbar corpectomy model 6 months postoperatively. Summary of Background Data. Vertebral reconstruction with corpectomy devices requires bone graft. Bone graft substitutes have the potential to avoid a second operation, donor site pain, and attendant morbidity associated with autograft. Methods. Twenty-four sheep in 6 treatment groups underwent lumbar corpectomy via a retroperitoneal trans-psoas approach. Spines were reconstructed with autograft, rhBMP-2 on a CRM, or rhBMP-2 on an ACS mixed with ceramic granules. Grafting materials were placed in either a titanium mesh or PEEK conduit in spines with internal fixation. Computed tomographic (CT) scans were evaluated for fusion. Undecalcified histology was used to evaluate for fusion as well as the amount and extent of graft incorporation and graft resorption. Results. Regardless of corpectomy device used, rhBMP-2/CRM or rhBMP-2/ACS with MASTERGRAFT resulted in a 100% fusion rate. The autograft group had a lower (75%) radiographic fusion rate. Using either preparation of rhBMP-2 resulted in the length of the defect filling with solid bone. Autograft fragments and ceramic granules were incorporated into the fusion masses with much of the ceramic granules being resorbed by 6 months. Conclusion. Both of the rhBMP-2 formulations have the potential to effect bony fusion and vertebral reconstruction within the corpectomy devices

    Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    Full text link
    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.IOS-1354935 - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); 1262934 - National Science Foundation (NSF); 2014-BSP - Arnold and Mabel Beckman Foundatio
    • …
    corecore