151 research outputs found

    Climate of origin affects tick (Ixodes ricinus) host-seeking behavior in response to temperature: implications for resilience to climate change?

    Get PDF
    Climate warming is changing distributions and phenologies of many organisms and may also impact on vectors of disease‐causing pathogens. In Europe, the tick Ixodes ricinus is the primary vector of medically important pathogens (e.g., Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis). How might climate change affect I. ricinus host‐seeking behavior (questing)? We hypothesize that, in order to maximize survival, I. ricinus have adapted their questing in response to temperature in accordance with local climates. We predicted that ticks from cooler climates quest at cooler temperatures than those from warmer climates. This would suggest that I. ricinus can adapt and therefore have the potential to be resilient to climate change. I. ricinus were collected from a cline of climates using a latitudinal gradient (northeast Scotland, North Wales, South England, and central France). Under laboratory conditions, ticks were subjected to temperature increases of 1°C per day, from 6 to 15°C. The proportion of ticks questing was recorded five times per temperature (i.e., per day). The theoretical potential to quest was then estimated for each population over the year for future climate change projections. As predicted, more ticks from cooler climates quested at lower temperatures than did ticks from warmer climates. The proportion of ticks questing was strongly associated with key climate parameters from each location. Our projections, based on temperature alone, suggested that populations could advance their activity season by a month under climate change, which has implications for exposure periods of hosts to tick‐borne pathogens. Our findings suggest that I. ricinus have adapted their behavior in response to climate, implying some potential to adapt to climate change. Predictive models of I. ricinus dynamics and disease risk over continental scales would benefit from knowledge of these differences between populations

    Towards an evolutionary understanding of questing behaviour in the tick Ixodes ricinus

    Get PDF
    The tick Ixodes ricinus finds its hosts by climbing vegetation and adopting a sit-and-wait tactic. This “questing” behaviour is known to be temperature-dependent, such that questing increases with temperature up to a point where the vapor pressure deficit (drying effect) forces ticks down to rehydrate in the soil or mat layer. Little if any attention has been paid to understanding the questing of ticks from an evolutionary perspective. Here we ask whether populations from colder climatic conditions respond differently in terms of the threshold temperature for questing and the rate of response to a fixed temperature. We find significant variation between populations in the temperature sensitivity of questing, with populations from cooler climates starting questing at lower temperatures than populations from warmer temperatures. Cool climate populations also quest sooner when the temperature is held constant. These patterns are consistent with local adaptation to temperature either through direct selection or acclimation and challenge the use of fixed thresholds for questing in modeling the spread of tick populations. Our results also show how both time and temperature play a role in questing, but we are unable to explain the relationship in terms of degree-time used to model Arthropod development. We find that questing in response to temperature fits well with a quantitative genetic model of the conditional strategy, which reveals how selection on questing may operate and hence may be of value in understanding the evolutionary ecology of questing

    Positive allometry and the prehistory of sexual selection

    Get PDF
    The function of the exaggerated structures that adorn many fossil vertebrates remains largely unresolved. One recurrent hypothesis is that these elaborated traits had a role in thermoregulation. This orthodoxy persists despite the observation that traits exaggerated to the point of impracticality in extant organisms are almost invariably sexually selected. We use allometric scaling to investigate the role of sexual selection and thermoregulation in the evolution of exaggerated traits of the crested pterosaur Pteranodon longiceps and the sail-backed eupelycosaurs Dimetrodon and Edaphosaurus. The extraordinarily steep positive allometry of the head crest of Pteranodon rules out all of the current hypotheses for this trait's main function other than sexual signaling. We also find interspecific patterns of allometry and sexual dimorphism in the sails of Dimetrodon and patterns of elaboration in Edaphosaurus consistent with a sexually selected function. Furthermore, small ancestral, sailbacked pelycosaurs would have been too small to need adaptations to thermoregulation. Our results question the popular view that the elaborated structures of these fossil species evolved as thermoregulatory organs and provide evidence in support of the hypothesis that Pteranodon crests and eupelycosaur sails are among the earliest and most extreme examples of elaborate sexual signals in the evolution of terrestrial vertebrates. © 2010 by The University of Chicago

    An age-dependent ovulatory strategy explains the evolution of dizygotic twinning in humans.

    Get PDF
    Dizygotic twinning, the simultaneous birth of siblings when multiple ova are released, is an evolutionary paradox. Twin-bearing mothers often have elevated fitness, but despite twinning being heritable, twin births occur only at low frequencies in human populations. We resolve this paradox by showing that twinning and non-twinning are not competing strategies; instead, dizygotic twinning is the outcome of an adaptive conditional ovulatory strategy of switching from single to double ovulation with increasing age. This conditional strategy, when coupled with the well-known decline in fertility as women age, maximizes reproductive success and explains the increase and subsequent decrease in the twinning rate with maternal age that is observed across human populations. We show that the most successful ovulatory strategy would be to always double ovulate as an insurance against early fetal loss, but to never bear twins. This finding supports the hypothesis that twinning is a by-product of selection for double ovulation rather than selection for twinning

    Quantifying variation in female internal genitalia: no evidence for plasticity in response to sexual conflict risk in a seed beetle

    Get PDF
    Sexually antagonistic coevolution can drive the evolution of male traits that harm females, and female resistance to those traits. While males have been found to vary their harmfulness to females in response to social cues, plasticity in female resistance traits remains to be examined. Here, we ask whether female seed beetles Callosobruchus maculatus are capable of adjusting their resistance to male harm in response to the social environment. Among seed beetles, male genital spines harm females during copulation and females might resist male harm via thickening of the reproductive tract walls. We develop a novel micro computed tomography imaging technique to quantify female reproductive tract thickness in three-dimensional space, and compared the reproductive tracts of females from populations that had evolved under high and low levels of sexual conflict, and for females reared under a social environment that predicted either high or low levels of sexual conflict. We find little evidence to suggest that females can adjust the thickness of their reproductive tracts in response to the social environment. Neither did evolutionary history affect reproductive tract thickness. Nevertheless, our novel methodology was capable of quantifying fine-scale differences in the internal reproductive tracts of individual females, and will allow future investigations into the internal organs of insects and other animals

    Comparative Transmissibility of SARS-CoV-2 Variants Delta and Alpha in New England, USA

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta\u27s infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∌6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta\u27s enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations

    Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA.

    Get PDF
    The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant\u27s respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta\u27s enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability

    The Use of Unusual Psychological Theories in Psychobiography: A Case Study and Discussion

    Get PDF
    This chapter argues for the use of ‘unusual’ theories in psychobiographical research through the presentation of a case study using such a theory. Historically, psychobiographical research has predominantly made use of the work of psychoanalytic and psychodynamic theorists and developmental theorists, while more recent psychobiographical approaches have preferred more modern, empirically based. However, over reliance on a few theories within psychobiographical research creates the possibility for narrow explanations of complex lives. Given the proliferation of theoretical modes in psychology the current use of theory barely scratches the surface of available explanatory paradigms. This chapter argues for the value of casting the explanatory net wider, and for the inclusion of more psychological theories in psychobiographical work. Using a psychobiographical case study, the chapter illustrates how a ‘forgotten’ psychological theory (script theory, based on the work of Tomkins) can serve as an extremely useful explanatory paradigm for a complex religious figure. The case study focuses on Gordon Hinckley (b. 1910, d. 2008), the fifteenth president of The Church of Jesus Christ of Latter-Day Saints (commonly referred to as the Mormon Church), who remains a prominent figure in contemporary Mormonism and played a key role in the rapid growth and increasingly positive public profile of the Religion throughout the twentieth and twenty-first centuries. Using Tomkins’ script theory in conjunction with a psychobiographical method and the analysis of data gathered from published speeches, this study explores Hinckley’s personality structure and identifies three core psychological scripts

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions
    • 

    corecore