28,692 research outputs found
Efficient multiple time scale molecular dynamics: using colored noise thermostats to stabilize resonances
Multiple time scale molecular dynamics enhances computational efficiency by
updating slow motions less frequently than fast motions. However, in practice
the largest outer time step possible is limited not by the physical forces but
by resonances between the fast and slow modes. In this paper we show that this
problem can be alleviated by using a simple colored noise thermostatting scheme
which selectively targets the high frequency modes in the system. For two
sample problems, flexible water and solvated alanine dipeptide, we demonstrate
that this allows the use of large outer time steps while still obtaining
accurate sampling and minimizing the perturbation of the dynamics. Furthermore,
this approach is shown to be comparable to constraining fast motions, thus
providing an alternative to molecular dynamics with constraints.Comment: accepted for publication by the Journal of Chemical Physic
High Velocity Line Emission in the NLR of NGC 4151
Narrow-band imaging of the nuclear region of NGC 4151 with the Hubble Space
Telescope is presented. The filter bandpasses isolate line emission in various
high velocity ranges in several ions. Slitless and long-slit spectra of the
region with the Space Telescope Imaging Spectrograph also indicate the
locations of high velocity gas. These emission regions are faint and are
interspersed among the bright emission clouds seen in direct images. They have
radial velocities up to 1400 km/s relative to the nucleus, and are found in
both approach and recession on both sides of the nucleus. This contrasts
strongly with the bright emission line clouds which have been discussed
previously as showing bidirectional outflow with velocities within 400 km/s of
the nucleus. We discuss the possible connections of the high velocity material
with the radio jet and the nuclear radiation.Comment: 12 pages plus 6 figures, to be published in A
Kinosternon subrubrum subrubrum (Eastern Mud Turtle) Predator Escape
Known avian predators of Kinosternon subrubrum include crows and eagles (Ernst et al. 1994. Turtles of the United States and Canada, Smithsonian Inst. Press, Washington, DC; Mitchell 1994. The Reptiles of Virginia, Smithsonian Inst. Press, Washington, DC)..
High-Pressure Synthesis of a Pentazolate Salt
The pentazolates, the last all-nitrogen members of the azole series, have
been notoriously elusive for the last hundred years despite enormous efforts to
make these compounds in either gas or condensed phases. Here we report a
successful synthesis of a solid state compound consisting of isolated
pentazolate anions N5-, which is achieved by compressing and laser heating
cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The
experiment was guided by theory, which predicted the transformation of the
mixture at high pressures to a new compound, cesium pentazolate salt (CsN5).
Electron transfer from Cs atoms to N5 rings enables both aromaticity in the
pentazolates as well as ionic bonding in the CsN5 crystal. This work provides a
critical insight into the role of extreme conditions in exploring unusual
bonding routes that ultimately lead to the formation of novel high nitrogen
content species
Local structural studies of BaKFeAs using atomic pair distribution function analysis
Systematic local structural studies of BaKFeAs system are
undertaken at room temperature using atomic pair distribution function (PDF)
analysis. The local structure of the BaKFeAs is found to be
well described by the long-range structure extracted from the diffraction
experiments, but with anisotropic atomic vibrations of the constituent atoms
( = ). The crystal unit cell parameters, the
FeAs tetrahedral angle and the pnictogen height above the Fe-plane are seen
to show systematic evolution with K doping, underlining the importance of the
structural changes, in addition to the charge doping, in determining the
properties of BaKFeAs
Two-dimensional Nanolithography Using Atom Interferometry
We propose a novel scheme for the lithography of arbitrary, two-dimensional
nanostructures via matter-wave interference. The required quantum control is
provided by a pi/2-pi-pi/2 atom interferometer with an integrated atom lens
system. The lens system is developed such that it allows simultaneous control
over atomic wave-packet spatial extent, trajectory, and phase signature. We
demonstrate arbitrary pattern formations with two-dimensional 87Rb wavepackets
through numerical simulations of the scheme in a practical parameter space.
Prospects for experimental realizations of the lithography scheme are also
discussed.Comment: 36 pages, 4 figure
Recommended from our members
Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution.
Elucidating the spectrum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises insights on cancer progression and drug resistance. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFβ-treatment and identify, through TGFβ-withdrawal, a distinct MET state. We demonstrate significant differences between EMT and MET trajectories using a computational tool (TRACER) for reconstructing trajectories between cell states. In addition, we construct a lung cancer reference map of EMT and MET states referred to as the EMT-MET PHENOtypic STAte MaP (PHENOSTAMP). Using a neural net algorithm, we project clinical samples onto the EMT-MET PHENOSTAMP to characterize their phenotypic profile with single-cell resolution in terms of our in vitro EMT-MET analysis. In summary, we provide a framework to phenotypically characterize clinical samples in the context of in vitro EMT-MET findings which could help assess clinical relevance of EMT in cancer in future studies
- …