1,970 research outputs found
Recommended from our members
Executive Summary
A National Science Foundation funded conference entitled, “Science, Technology, Engineering and Math – Alternative Certification for Teachers” (STEM-ACT) was held in May, 2006 in Arlington, VA. The conference was designed to facilitate a significant exchange of information, which was then synthesized to produce white papers on the three threads of the conference, i.e., policy, practice, and research. This summary presents the highlights of the three white papers
Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample
We measure planet occurrence rates using the planet candidates discovered by
the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates
for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and
orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration
and identification of the most important sources of systematic uncertainties.
Integrating over this parameter space, we measure an occurrence rate of F=0.77
planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes
into account both statistical and systematic uncertainties, and values of F
beyond the allowed range are significantly in disagreement with our analysis.
We generally find higher planet occurrence rates and a steeper increase in
planet occurrence rates towards small planets than previous studies of the
Kepler GK dwarf sample. Through extrapolation, we find that the one year
orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed
range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per
star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1
parameter space is a subset of the larger eta_earth parameter space, thus
zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis,
we identify the leading sources of systematics impacting Kepler occurrence rate
determinations as: reliability of the planet candidate sample, planet radii,
pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler
pipeline completeness estimates available at
http://github.com/christopherburke/KeplerPORTs
Recommended from our members
Grant Proposal for STEM ACT Conference
The STEM Education Institute and the School of Education at the University of Massachusetts Amherst propose to hold a conference entitled Science, Technology, Engineering and Math - Alternative Certification for Teachers (STEM-ACT) in November 2005 in the Washington D.C. area. The conference will focus on alternative certification programs for the preparation of science teachers. The overall purpose of the conference is to identify key features and issues relating to the alternative certification of science teachers as a basis for developing a more systematic approach to the study of these efforts. In particular, the conference asks, What do we know and what more do we need to know to incorporate the results of more than 30 years of research on science teaching and learning into alternative certification programs
Taxonomic revision transferring species in Kuklospora to Acaulospora (Glomeromycota) and a description of Acaulospora colliculosa sp. nov. from field collected spores
In a phylogenetic study of arbuscular mycorrhizal fungal species in Acaulospora (Acaulosporaceae, Glomeromycota) we discovered that species classified in genus Kuklospora, a supposed sister clade of Acaulospora, did not partition as a monophyletic clade. Species in these two genera can be distinguished only by the position of the spore relative to a precursor structure, the sporiferous saccule, as either within (entrophosporoid) or laterally (acaulosporoid) on the saccule subtending hypha. Subsequent spore differentiation follows identical patterns and organization. Molecular phylogeny reconstructed from nrLSU gene sequences, together with developmental data, support the hypothesis that the entrophosporoid mode of spore formation evolved many times and thus represents a convergent trait of little phylogenetic significance. Therefore genus Kuklospora is rejected as a valid monophyletic group and it is integrated taxonomically into genus Acaulospora. Thus Acaulospora colombiana and Acaulospora kentinensis are erected as new combinations (formerly Kuklospora colombiana and Kuklospora kentinensis). Mode of spore formation is demoted from a genus-specific character to one that is included with other traits to define Acaulospora species. In addition we describe a new AM fungal species, Acaulospora colliculosa (Acaulosporaceae), that originated from a tallgrass prairie in North America. Field-collected spores of A. colliculosa are small (<100 μm diam), hyaline or subhyaline to pale yellow and form via entrophosporoid development based on structure and organization of cicatrices and attached hyphae. Each spore consists of a bilayered spore wall and two bilayered inner walls. A germination orb likely forms after the completion of spore development to initiate germination, but this structure was not observed. A character distinguishing A. colliculosa from other Acaulospora species is hyaline to subhyaline hemispherical protuberances on the surface of the outer spore wall layer. A phylogeny reconstructed from partial nrLSU gene sequences unambiguously placed A. colliculosa in the Acaulospora clade
Planetary Candidates Observed by Kepler IV: Planet Sample From Q1-Q8 (22 Months)
We provide updates to the Kepler planet candidate sample based upon nearly
two years of high-precision photometry (i.e., Q1-Q8). From an initial list of
nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are
identified from their flux time series as consistent with hosting transiting
planets. Potential transit signals are subjected to further analysis using the
pixel-level data, which allows background eclipsing binaries to be identified
through small image position shifts during transit. We also re-evaluate Kepler
Objects of Interest (KOI) 1-1609, which were identified early in the mission,
using substantially more data to test for background false positives and to
find additional multiple systems. Combining the new and previous KOI samples,
we provide updated parameters for 2,738 Kepler planet candidates distributed
across 2,017 host stars. From the combined Kepler planet candidates, 472 are
new from the Q1-Q8 data examined in this study. The new Kepler planet
candidates represent ~40% of the sample with Rp~1 Rearth and represent ~40% of
the low equilibrium temperature (Teq<300 K) sample. We review the known biases
in the current sample of Kepler planet candidates relevant to evaluating planet
population statistics with the current Kepler planet candidate sample.Comment: 12 pages, 8 figures, Accepted ApJ Supplemen
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting
exoplanets based on searching four years of Kepler time series photometry (Data
Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet
candidates with periods between 0.25 and 632 days. Of these candidates, 219 are
new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and
ten high-reliability, terrestrial-size, habitable zone candidates. This catalog
was created using a tool called the Robovetter which automatically vets the
DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also
vetted simulated data sets and measured how well it was able to separate TCEs
caused by noise from those caused by low signal-to-noise transits. We discusses
the Robovetter and the metrics it uses to sort TCEs. For orbital periods less
than 100 days the Robovetter completeness (the fraction of simulated transits
that are determined to be planet candidates) across all observed stars is
greater than 85%. For the same period range, the catalog reliability (the
fraction of candidates that are not due to instrumental or stellar noise) is
greater than 98%. However, for low signal-to-noise candidates between 200 and
500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the
catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the
simulated data used to characterize this catalog are available at the NASA
Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal
Supplement Serie
Acaulospora colossica sp. nov. from an old field in North Carolina and morphological comparisons with similar species, A. laevis and A. koskei
A new arbuscular mycorrhizal fungal species, Acaulospora colossica, (Glomales, Acaulosporaceae) is described, and its distribution and seasonality discussed. Spores of A. colossica develop from saccules that empty their contents in the developing spores. Spore wall structure consists of 3 layers, all originating from the subtending hyphae. The two inner layers are laminated. The outermost spore wall layer is typically sloughed off before the spores mature. Two inner walls arise sequentially. Both inner walls are comprised of two layers. The outer layer of the innermost wall is beaded. Acaulospora colossica is described from a population in Durham, North Carolina. Its name refers to the relatively large size of the spores. Finally, the morphology of the new species A. colossica is compared and contrasted to two closely related species A. laevis and A. koskei
Two Earth-sized planets orbiting Kepler-20
Since the discovery of the first extrasolar giant planets around Sun-like
stars, evolving observational capabilities have brought us closer to the
detection of true Earth analogues. The size of an exoplanet can be determined
when it periodically passes in front of (transits) its parent star, causing a
decrease in starlight proportional to its radius. The smallest exoplanet
hitherto discovered has a radius 1.42 times that of the Earth's radius (R
Earth), and hence has 2.9 times its volume. Here we report the discovery of two
planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth
(0.87R Earth), orbiting the star Kepler-20, which is already known to host
three other, larger, transiting planets. The gravitational pull of the new
planets on the parent star is too small to measure with current
instrumentation. We apply a statistical method to show that the likelihood of
the planetary interpretation of the transit signals is more than three orders
of magnitude larger than that of the alternative hypothesis that the signals
result from an eclipsing binary star. Theoretical considerations imply that
these planets are rocky, with a composition of iron and silicate. The outer
planet could have developed a thick water vapour atmosphere.Comment: Letter to Nature; Received 8 November; accepted 13 December 2011;
Published online 20 December 201
Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler
We report the distribution of planets as a function of planet radius (R_p),
orbital period (P), and stellar effective temperature (Teff) for P < 50 day
orbits around GK stars. These results are based on the 1,235 planets (formally
"planet candidates") from the Kepler mission that include a nearly complete set
of detected planets as small as 2 Earth radii (Re). For each of the 156,000
target stars we assess the detectability of planets as a function of R_p and P.
We also correct for the geometric probability of transit, R*/a. We consider
first stars within the "solar subset" having Teff = 4100-6100 K, logg =
4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having
noise low enough to permit detection of planets down to 2 Re. We count planets
in small domains of R_p and P and divide by the included target stars to
calculate planet occurrence in each domain. Occurrence of planets varies by
more than three orders of magnitude and increases substantially down to the
smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25
AU) in our study. For P < 50 days, the radius distribution is given by a power
law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with
decreasing planet size agrees with core-accretion, but disagrees with
population synthesis models. We fit occurrence as a function of P to a power
law model with an exponential cutoff below a critical period P_0. For smaller
planets, P_0 has larger values, suggesting that the "parking distance" for
migrating planets moves outward with decreasing planet size. We also measured
planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The
occurrence of 2-4 Re planets in the Kepler field increases with decreasing
Teff, making these small planets seven times more abundant around cool stars
than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
- …
