54 research outputs found

    A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 5697-5717, doi:10.5194/bg-13-5697-2016.Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.This work was funded by NSF awards OCE-1233733 to MAS, OCE-1232814 to BST, and OCE-1237011 to JAR

    Organic biogeochemistry in West Mata, NE Kau hydrothermal vent fields

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(4), (2021): e2020GC009481, https://doi.org/10.1029/2020GC009481.The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on-going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back-arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C-POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean.This project was supported by N.S.F. (OCE0929881, J. P. Cowen and K. H. Rubin), the NOAA PMEL VENTS (now Earth-Ocean Interactions) Program and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA10OAR4320148, and the UH NASA Astrobiology Institute. The Ministry of Science and Technology of Taiwan award (MOST 107-2611-M-002-002, and MOST 108-2611-M-002-006 to H.-T. Lin). Ministry of Education (M.O.E.) Republic of China (Taiwan) 109L892601 to H.-T. Lin. SOEST contributions no. 11285, C-DEBI contribution no. 563. PMEL contribution no. 3996, JISAO contribution 2183

    Lava-Seawater Interactions at Shallow-Water Submarine Lava Flows

    Get PDF
    Hydrothermal plumes associated with nearshore lava flows from Kilauea Volcano, Hawaii were studied on five occasions during 1989-1990 to address the current lack of data on direct lava-seawater interactions. The following enrichments were found in the sea-surface hydrothermal plumes above the active underwater lava flows: H2, 15,000x ambient seawater concentrations; Mn, 250x; and Si, 20x. Water temperatures reached 46°C. Lower concentrations and temperatures were observed in the plumes with increasing distance from shore, with H2, Si, and Mn concentrations linearly related to seawater temperature. Unlike deep sea spreading center hydrothermal plumes, no CH4 enrichment was observed. The elevated H2 is likely to be from water-rock reactions, rather than from the release of magmatic gas. The plume mass/heat ratios presented here suggest that submarine flood basalts, although aerially large, should be relatively small immediate contributors to oceanic geochemical cycles compared to hydrothermal circulation through the crust

    High-Resolution Surveys Along the Hot Spot–Affected Galapagos Spreading Center: 1. Distribution of Hydrothermal Activity

    Get PDF
    The spatial density of hydrothermal activity along most mid-ocean ridges is a robust linear function of spreading rate (or magmatic budget), but extreme crustal properties may alter this relationship. In 2005–2006 we tested the effect of thickened crust on hydrothermal activity using high-resolution mapping of plumes overlying the hot spot–affected Galapagos Spreading Center from 95o to 89o42\u27W (~560 km of ridge crest). Plume mapping discovered only two active, high-temperature vent fields, subsequently confirmed by camera tows, though strong plume evidence indicated minor venting from at least six other locations. Total plume incidence (ph), the fraction of ridge crest overlain by significant plumes, was 0.11 ± 0.014, about half that expected for a non–hot spot mid-ocean ridge with a similar magmatic budget. Plume distributions on the Galapagos Spreading Center were uncorrelated with abrupt variations in the depth of the along-axis melt lens, so these variations are apparently not controlled by hydrothermal cooling differences. We also found no statistical difference (for a significance level of 0.05) in plume incidence between where the seismically imaged melt lens is shallow (2 ± 0.56 km, ph = 0.108 ± 0.045) and where it is deep (3.4 ± 0.7 km, ph = 0.121 ± 0.015). The Galapagos Spreading Center thus joins mid-ocean ridges near the Iceland (Reykjanes Ridge), St. Paul-Amsterdam (South East Indian Ridge), and Ascension (Mid- Atlantic Ridge) hot spots as locations of anomalously scarce high-temperature venting. This scarcity implies that convective cooling along hot spot–affected ridge sections occurs primarily by undetected diffuse flow or is permanently or episodically reduced compared to normal mid-ocean ridges

    Position of Aleutian Low Drives Dramatic Inter-Annual Variability in Atmospheric Transport of Glacial Iron to the Gulf of Alaska

    Get PDF
    Our understanding of glacial flour dust storm delivery of iron to the Gulf of Alaska (GoA) is limited. We interpret concurrent time-series satellite, meteorological, and aerosol geochemical data from the GoA to examine how inter-annual variability in regional weather patterns impacts offshore aerosol glacial iron transport. In 2011, when a northerly Aleutian Low (AL) was persistent during fall, dust emission was suppressed and highly intermittent due to prevalent wet conditions, low winds and a deep early season snowpack. Conversely, in 2012, frequent and prolonged fall dust storms and high offshore glacial iron transport were driven by dry conditions and strong offshore winds generated by persistent strong high pressure over the Alaskan interior and Bering Sea and a southerly AL. Remarkable inter-annual variability in offshore glacial aerosol iron transport indicates that the role of glacial dust in GoA nutrient cycles is likely highly dynamic and particularly sensitive to regional climate forcing

    Hydrothermal Activity and Seismicity at Teahitia Seamount: Reactivation of the Society Islands Hotspot?

    Get PDF
    Along mid-ocean ridges, submarine venting has been found at all spreading rates and in every ocean basin. By contrast, intraplate hydrothermal activity has only been reported from five locations, worldwide. Here we extend the time series at one of those sites, Teahitia Seamount, which was first shown to be hydrothermally active in 1983 but had not been revisited since 1999. Previously, submersible investigations had led to the discovery of low-temperature (≤30°C) venting associated with the summit of Teahitia Seamount at ≤1500 m. In December 2013 we returned to the same site at the culmination of the US GEOTRACES Eastern South Tropical Pacific (GP16) transect and found evidence for ongoing venting in the form of a non-buoyant hydrothermal plume at a depth of 1400 m. Multi-beam mapping revealed the same composite volcano morphology described previously for Teahitia including four prominent cones. The plume overlying the summit showed distinct in situ optical backscatter and redox anomalies, coupled with high concentrations of total dissolvable Fe (≤186 nmol/L) and Mn (≤33 nmol/L) that are all diagnostic of venting at the underlying seafloor. Continuous seismic records from 1986-present reveal a ∼15 year period of quiescence at Teahitia, following the seismic crisis that first stimulated its submersible-led investigation. Since 2007, however, the frequency of seismicity at Teahitia, coupled with the low magnitude of those events, are suggestive of magmatic reactivation. Separately, distinct seismicity at the adjacent Rocard seamount has also been attributed to submarine extrusive volcanism in 2011 and in 2013. Theoretical modeling of the hydrothermal plume signals detected suggest a minimum heat flux of 10 MW at the summit of Teahitia. Those model simulations can only be sourced from an area of low-temperature venting such as that originally reported from Teahitia if the temperature of the fluids exiting the seabed has increased significantly, from ≤30°C to ∼70°C. These model seafloor temperatures and our direct plume observations are both consistent with reports from Loihi Seamount, Hawaii, ∼10 year following an episode of seafloor volcanism. We hypothesize that the Society Islands hotspot may be undergoing a similar episode of both magmatic and hydrothermal reactivation

    Methane, Manganese, and Helium in Hydrothermal Plumes following Volcanic Eruptions on the East Pacific Rise near 9°500N

    Get PDF
    As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0\u27N and 9°57.6\u27N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21% versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date

    Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin : 1996–2012

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4093–4115, doi:10.1002/2014GC005387.We present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.Support for R.W.E. during this study was by internal NOAA funding to the NOAA Vents Program (now Earth-Ocean Interactions Program). The NSF Ridge 2000 and MARGINS programs played a major role in the planning and justification for the 2009 rapid response proposal that funded the May 2009 expedition. MBARI provided support and outstanding postprocessing of the multibeam bathymetry from the D. Allan B. AUV multibeam sonar used in this study. NSF also provided major funding for the 2009 expedition (OCE930025 and OCE-0934660 to JAR) and for the 210Po-210Pb radiometric dating (OCE-0929881 and for the 210Po-210Pb radiometric dating (OCE-0929881 to KHR)). The NOAA Office of Exploration and Research provided major funding for the 2009 and 2012 field programs.2015-04-3
    corecore