1,256 research outputs found

    Threshold and linewidth of a mirrorless parametric oscillator

    Get PDF
    We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four wave mixing in a coherently driven dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that due to the large group-velocity delays associated with coherent media, an extremely narrow oscillator linewidth is possible, making a narrow-band source of non-classical radiation feasible.Comment: revised version to appear in Phys.Rev.Lett., contains discussion on threshold conditions and operation on few-photon leve

    Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer

    Get PDF
    A detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | H_2O and Al(111) | H_2O interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (E_F). The observed fractional charge in the absence of frontier band misalignment arises from a significant overlap between the proton and the electron density from the metal surface, and results in an energetic difference between protons in bulk solution and those in the outer Helmholtz plane

    Transition Metal Arsenide Catalysts for the Hydrogen Evolution Reaction

    Get PDF
    We report, to our knowledge for the first time, a combined experimental and density functional theory (DFT) investigation into the activity and stability of cobalt, molybdenum, and copper arsenides as catalysts for the hydrogen evolution reaction (HER). We find CoAs and MoAs to be the most active arsenide materials. We discuss the trends between calculated surface vacancy formation energies and catalyst stability. Using a simple thermodynamic model of HER activity, we find consistent trends between hydrogen binding free energy and the experimentally observed activity

    Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies.

    Get PDF
    IntroductionQuantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design.MethodsPittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally.ResultsGlobal amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers.DiscussionAlthough the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers

    Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer

    Get PDF
    A detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | H_2O and Al(111) | H_2O interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (E_F). The observed fractional charge in the absence of frontier band misalignment arises from a significant overlap between the proton and the electron density from the metal surface, and results in an energetic difference between protons in bulk solution and those in the outer Helmholtz plane

    Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA

    Get PDF
    The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • …
    corecore