200 research outputs found
Genetic Recombination as a Chemical Reaction Network
The process of genetic recombination can be seen as a chemical reaction
network with mass-action kinetics. We review the known results on existence,
uniqueness, and global stability of an equilibrium in every compatibility class
and for all rate constants, from both the population genetics and the reaction
networks point of view
Time averages, recurrence and transience in the stochastic replicator dynamics
We investigate the long-run behavior of a stochastic replicator process,
which describes game dynamics for a symmetric two-player game under aggregate
shocks. We establish an averaging principle that relates time averages of the
process and Nash equilibria of a suitably modified game. Furthermore, a
sufficient condition for transience is given in terms of mixed equilibria and
definiteness of the payoff matrix. We also present necessary and sufficient
conditions for stochastic stability of pure equilibria.Comment: Published in at http://dx.doi.org/10.1214/08-AAP577 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Brown-von Neumann-Nash Dynamics: The Continuous Strategy Case
In John Nash’s proofs for the existence of (Nash) equilibria based on Brouwer’s theorem, an iteration mapping is used. A continuous- time analogue of the same mapping has been studied even earlier by Brown and von Neumann. This differential equation has recently been suggested as a plausible boundedly rational learning process in games. In the current paper we study this Brown-von Neumann-Nash dynamics for the case of continuous strategy spaces. We show that for continuous payoff functions, the set of rest points of the dynamics coincides with the set of Nash equilibria of the underlying game. We also study the asymptotic stability properties of rest points. While strict Nash equilibria may be unstable, we identify sufficient conditions for local and global asymptotic stability which use concepts developed in evolutionary game theory.learning in games, evolutionary stability, BNN
Robust permanence for interacting structured populations
The dynamics of interacting structured populations can be modeled by
where , , and
are matrices with non-negative off-diagonal entries. These models are
permanent if there exists a positive global attractor and are robustly
permanent if they remain permanent following perturbations of .
Necessary and sufficient conditions for robust permanence are derived using
dominant Lyapunov exponents of the with respect to
invariant measures . The necessary condition requires for all ergodic measures with support in the boundary of the
non-negative cone. The sufficient condition requires that the boundary admits a
Morse decomposition such that for all invariant
measures supported by a component of the Morse decomposition. When the
Morse components are Axiom A, uniquely ergodic, or support all but one
population, the necessary and sufficient conditions are equivalent.
Applications to spatial ecology, epidemiology, and gene networks are given
Irrational behavior in the Brown-von Neumann-Nash dynamics
We present a class of games with a pure strategy being strictly dominated by another pure strategy such that the former survives along most solutions of the Brown-von Neumann-Nash dynamics.Nash map, BNN dynamics, Dominated strategies
Learning in Perturbed Asymmetric Games
We investigate the stability of mixed strategy equilibria in 2 person (bimatrix) games under perturbed best response dynamics. A mixed equilibrium is asymptotically stable under all such dynamics if and only if the game is linearly equivalent to a zero sum game. In this case, the mixed equilibrium is also globally asymptotically stable. Global convergence to the set of perturbed equilibria is shown also for (rescaled) partnership games (also know as games of identical interest). Some applications of these result to stochastic learning models are given.Games, Learning, Best Response Dynamics, Stochastic Fictitious Play, Mixed Strategy Equilibria, Zero Sum Games
Survival of dominated strategies under evolutionary dynamics
We prove that any deterministic evolutionary dynamic satisfying four mild requirements fails to eliminate strictly dominated strategies in some games. We also show that existing elimination results for evolutionary dynamics are not robust to small changes in the specifications of the dynamics. Numerical analysis reveals that dominated strategies can persist at nontrivial frequencies even when the level of domination is not small.Evolutionary game theory, evolutionary game dynamics, nonconvergnece, dominated strategies
Time Average Replicator and Best Reply Dynamics
Using an explicit representation in terms of the logit map we show, in a unilateral framework, that the time average of the replicator dynamics is a perturbed solution of the best reply dynamics.replicator dynamics; best reply dynamics; logit map; perturbed differential inclusion; internally chain transitive set; attractor
- …