18 research outputs found

    Factors controlling the community structure of picoplankton in contrasting marine environments

    Get PDF
    The effect of inorganic nutrients on planktonic assemblages has traditionally relied on concentrations rather than estimates of nutrient supply. We combined a novel dataset of hydrographic properties, turbulent mixing, nutrient concentration, and picoplankton community composition with the aims of (i) quantifying the role of temperature, light, and nitrate fluxes as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups, as determined by flow cytometry, and (ii) describing the ecological niches of the various components of the picoplankton community. Data were collected at 97 stations in the Atlantic Ocean, including tropical and subtropical open-ocean waters, the northwestern Mediterranean Sea, and the Galician coastal upwelling system of the northwest Iberian Peninsula. A generalized additive model (GAM) approach was used to predict depth-integrated biomass of each picoplankton subgroup based on three niche predictors: sea surface temperature, averaged daily surface irradiance, and the transport of nitrate into the euphotic zone, through both diffusion and advection. In addition, niche overlap among different picoplankton subgroups was computed using nonparametric kernel density functions. Temperature and nitrate supply were more relevant than light in predicting the biomass of most picoplankton subgroups, except for Prochlorococcus and low-nucleic-acid (LNA) prokaryotes, for which irradiance also played a significant role. Nitrate supply was the only factor that allowed the distinction among the ecological niches of all autotrophic and heterotrophic picoplankton subgroups. Prochlorococcus and LNA prokaryotes were more abundant in warmer waters ( \u3e 20°C) where the nitrate fluxes were low, whereas Synechococcus and high-nucleic-acid (HNA) prokaryotes prevailed mainly in cooler environments characterized by intermediate or high levels of nitrate supply. Finally, the niche of picoeukaryotes was defined by low temperatures and high nitrate supply. These results support the key role of nitrate supply, as it not only promotes the growth of large phytoplankton, but it also controls the structure of marine picoplankton communities

    Elevated expression of the chemokine-scavenging receptor D6 is associated with impaired lesion development in psoriasis

    Get PDF
    D6 is a scavenging-receptor for inflammatory CC chemokines that are essential for resolution of inflammatory responses in mice. Here, we demonstrate that D6 plays a central role in controlling cutaneous inflammation, and that D6 deficiency is associated with development of a psoriasis-like pathology in response to varied inflammatory stimuli in mice. Examination of D6 expression in human psoriatic skin revealed markedly elevated expression in both the epidermis and lymphatic endothelium in "uninvolved" psoriatic skin (ie, skin that was more than 8 cm distant from psoriatic plaques). Notably, this increased D6 expression is associated with elevated inflammatory chemokine expression, but an absence of plaque development, in uninvolved skin. Along with our previous observations of the ability of epidermally expressed transgenic D6 to impair cutaneous inflammatory responses, our data support a role for elevated D6 levels in suppressing inflammatory chemokine action and lesion development in uninvolved psoriatic skin. D6 expression consistently dropped in perilesional and lesional skin, coincident with development of psoriatic plaques. D6 expression in uninvolved skin also was reduced after trauma, indicative of a role for trauma-mediated reduction in D6 expression in triggering lesion development. Importantly, D6 is also elevated in peripheral blood leukocytes in psoriatic patients, indicating that upregulation may be a general protective response to inflammation. Together our data demonstrate a novel role for D6 as a regulator of the transition from uninvolved to lesional skin in psoriasis

    The Florida pancreas collaborative next-generation biobank: Infrastructure to reduce disparities and improve survival for a diverse cohort of patients with pancreatic cancer

    Get PDF
    Background: Well-annotated, high-quality biorepositories provide a valuable platform to support translational research. However, most biorepositories have poor representation of minority groups, limiting the ability to address health disparities. Methods: We describe the establishment of the Florida Pancreas Collaborative (FPC), the first state-wide prospective cohort study and biorepository designed to address the higher burden of pancreatic cancer (PaCa) in African Americans (AA) compared to Non-Hispanic Whites (NHW) and Hispanic/Latinx (H/L). We provide an overview of stakeholders; study eligibility and design; recruitment strategies; standard operating procedures to collect, process, store, and transfer biospecimens, medical images, and data; our cloud-based data management platform; and progress regarding recruitment and biobanking. Results: The FPC consists of multidisciplinary teams from fifteen Florida medical institutions. From March 2019 through August 2020, 350 patients were assessed for eligibility, 323 met inclusion/exclusion criteria, and 305 (94%) enrolled, including 228 NHW, 30 AA, and 47 H/L, with 94%, 100%, and 94% participation rates, respectively. A high percentage of participants have donated blood (87%), pancreatic tumor tissue (41%), computed tomography scans (76%), and questionnaires (62%). Conclusions: This biorepository addresses a critical gap in PaCa research and has potential to advance translational studies intended to minimize disparities and reduce PaCa-related morbidity and mortality

    Modified Laminar Bone in Ampelosaurus atacis and Other Titanosaurs (Sauropoda): Implications for Life History and Physiology

    Get PDF
    BACKGROUND: Long bone histology of the most derived Sauropoda, the Titanosauria suggests that titanosaurian long bone histology differs from the uniform bone histology of basal Sauropoda. Here we describe the long bone histology of the titanosaur Ampelosaurus atacis and compare it to that of basal neosauropods and other titanosaurs to clarify if a special titanosaur bone histology exists. METHODOLOGY/PRINCIPAL FINDINGS: Ampelosaurus retains the laminar vascular organization of basal Sauropoda, but throughout most of cortical growth, the scaffolding of the fibrolamellar bone, which usually is laid down as matrix of woven bone, is laid down as parallel-fibered or lamellar bone matrix instead. The remodeling process by secondary osteons is very extensive and overruns the periosteal bone deposition before skeletal maturity is reached. Thus, no EFS is identifiable. Compared to the atypical bone histology of Ampelosaurus, the large titanosaur Alamosaurus shows typical laminar fibrolamellar bone. The titanosaurs Phuwiangosaurus, Lirainosaurus, and Magyarosaurus, although differing in certain features, all show this same low amount or absence of woven bone from the scaffolding of the fibrolamellar bone, indicating a clear reduction in growth rate resulting in a higher bone tissue organization. To describe the peculiar primary cortical bone tissue of Phuwiangosaurus, Ampelosaurus, Lirainosaurus, and Magyarosaurus, we here introduce a new term, "modified laminar bone" (MLB). CONCLUSIONS/SIGNIFICANCE: Importantly, MLB is as yet not known from extant animals. At least in Lirainosaurus and Magyarosaurus the reduction of growth rate indicated by MLB is coupled with a drastic body size reduction and maybe also a reduction in metabolic rate, interpreted as a result of dwarfing on the European islands during the Late Cretaceous. Phuwiangosaurus and Ampelosaurus both show a similar reduction in growth rate but not in body size, possibly indicating also a reduced metabolic rate. The large titanosaur Alamosaurus, on the other hand, retained the plesiomorphic bone histology of basal neosauropods

    Microarray analyses demonstrate the involvement of Type I Interferons in psoriasiform pathology development in D6 deficient mice

    No full text
    The inflammatory response is normally limited by mechanisms regulating its resolution. In the absence or resolution inflammatory pathologies can emerge resulting in substantial morbidity and mortality. We had been studying the D6 chemokine scavenging receptor which played an indispensable role in the resolution phase of inflammatory responses and does so by facilitating removal of inflammatory CC chemokines. In D6 deficient mice, otherwise innocuous cutaneous inflammatory stimuli induce a grossly exaggerated inflammatory response that bears many similarities to human psoriasis. In the present study we have used transcriptomic approaches to define the molecular make up of this response. The data presented highlights a number of cytokines as playing potential role is in development of this psoriasis like pathology. Most compellingly, we provide data indicating a key role for the type I interferon pathway in the emergence of this pathology. Neutralising antibodies to type I interferons are able to ameliorate the psoriasis like pathology confirming a role in its development. Comparison of the data generated from this mouse model worth data from transcriptional analysis of human psoriasis further demonstrate their strong similarities. Finally, these transcriptional data provide insights into the cytokine network active in exaggerated inflammatory responses

    Data from: A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs

    No full text
    Titanosauria was the most diverse and successful lineage of sauropod dinosaurs. This clade had its major radiation during the middle Early Cretaceous and survived up to the end of that period. Among sauropods, this lineage has the most disparate values of body mass, including the smallest and largest sauropods known. Although recent findings have improved our knowledge on giant titanosaur anatomy, there are still many unknown aspects about their evolution, especially for the most gigantic forms and the evolution of body mass in this clade. Here we describe a new giant titanosaur, which represents the largest species described so far and one of the most complete titanosaurs. Its inclusion in an extended phylogenetic analysis and the optimization of body mass reveals the presence of an endemic clade of giant titanosaurs inhabited Patagonia between the Albian and the Santonian. This clade includes most of the giant species of titanosaurs and represents the major increase in body mass in the history of Titanosauria

    Data from: A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs

    No full text
    Titanosauria was the most diverse and successful lineage of sauropod dinosaurs. This clade had its major radiation during the middle Early Cretaceous and survived up to the end of that period. Among sauropods, this lineage has the most disparate values of body mass, including the smallest and largest sauropods known. Although recent findings have improved our knowledge on giant titanosaur anatomy, there are still many unknown aspects about their evolution, especially for the most gigantic forms and the evolution of body mass in this clade. Here we describe a new giant titanosaur, which represents the largest species described so far and one of the most complete titanosaurs. Its inclusion in an extended phylogenetic analysis and the optimization of body mass reveals the presence of an endemic clade of giant titanosaurs inhabited Patagonia between the Albian and the Santonian. This clade includes most of the giant species of titanosaurs and represents the major increase in body mass in the history of Titanosauria

    Which factors control the picoplankton community structure in the ocean?

    No full text
    Aquatic Sciences Meeting (Aquatic Sciences: Global And Regional Perspectives - North Meets South), 22-27 February 2015, Granada, Spain.Picoplankton are the most abundant organisms in the ocean, often dominate planktonic biomass and primary production, and they could represent a substantial contribution to the global export of carbon. Today, we have a limited understanding about the factors that control the picoplankton community structure. A recent analysis indicates that light and temperature are the main factors explaining Prochlorococcus and Synechococcus distributions, whereas nutrient concentrations play a minor role (Flombaum et al., PNAS 2013). Methodological difficulties to quantify mixing in the field have motivated the use of indirect approaches to determine the input of nutrients into the euphotic zone and moreover, nutrient concentrations are not necessarily a proxy of nutrient supply. We present a large data set, including open ocean and coastal regions, of simultaneous measurements of picoplankton abundance, temperature and irradiance, together with estimates of nutrient supply. The transport of nutrients across the nutricline was computed combining nutrient concentrations and small-scale turbulence observations collected with a microstructure profiler. Our preliminary results indicate that nutrient supply also plays a role in the distribution of picoplankton functional groups in the oceanPeer Reviewe

    Why should phytoplankton ecologists care about turbulence?

    No full text
    1st Meeting of the Iberian Ecological Society & XIV AEET Meeting "Ecology: an integrative science in the Anthropocene", Barcelona, Spain, 4th – 7th February 2019Drawings by Leonardo da Vinci painted 500 years ago demonstrate that turbulence has been a fascinating topic for centuries. This process dominates the transfer of momentum and heat, and the dispersion of small organic and inorganic substances in the ocean. Only recently we have been able to measure turbulence in the field on a regular basis. One of the fascinating implications of this progress is the possibility to revisit classic models in phytoplankton ecology. In 1978 Margalef proposed in his famous mandala that turbulence and inorganic macronutrients are the two main factors controlling the succession of main microphytoplankton groups. Several limitations were noted when applying this approach to the field. First, the Margalef´s mandala describes only the succession of vegetative phases of microphytoplankton. Moreover, due to the difficulties in quantifying mixing in the field, the validation of Margalef´s model was traditionally limited to studies where indirect estimates of nutrient supply were used. Here we combined a novel dataset of hydrographic properties, turbulent mixing, nutrient concentration and pico and microplankton community composition collected in tropical and subtropical regions, the Northwestern Mediterranean sea, and the Galician upwelling system to validate, for the first time, the Margalef´s mandala in the fieldPeer reviewe
    corecore