48 research outputs found
Receiver design for the REACH global 21-cm signal experiment
We detail the the REACH radiometric system designed to enable measurements of
the 21-cm neutral hydrogen line. Included is the radiometer architecture and
end-to-end system simulations as well as a discussion of the challenges
intrinsic to highly-calibratable system development. Following this, we share
laboratory results based on the calculation of noise wave parameters utilising
an over-constrained least squares approach demonstrating a calibration RMSE of
80 mK for five hours of integration on a custom-made source with comparable
impedance to that of the antenna used in the field. This paper therefore
documents the state of the calibrator and data analysis in December 2022 in
Cambridge before shipping to South Africa.Comment: 30 pages, 19 figure
Recommended from our members
Foreground modelling via Gaussian process regression: An application to HERA data
The key challenge in the observation of the redshifted 21-cm signal from
cosmic reionization is its separation from the much brighter foreground
emission. Such separation relies on the different spectral properties of the
two components, although, in real life, the foreground intrinsic spectrum is
often corrupted by the instrumental response, inducing systematic effects that
can further jeopardize the measurement of the 21-cm signal. In this paper, we
use Gaussian Process Regression to model both foreground emission and
instrumental systematics in hours of data from the Hydrogen Epoch of
Reionization Array. We find that a simple co-variance model with three
components matches the data well, giving a residual power spectrum with white
noise properties. These consist of an "intrinsic" and instrumentally corrupted
component with a coherence-scale of 20 MHz and 2.4 MHz respectively (dominating
the line of sight power spectrum over scales h
cMpc) and a baseline dependent periodic signal with a period of
MHz (dominating over h cMpc) which should
be distinguishable from the 21-cm EoR signal whose typical coherence-scales is
MHz
Recommended from our members
Foreground modelling via Gaussian process regression: An application to HERA data
The key challenge in the observation of the redshifted 21-cm signal from
cosmic reionization is its separation from the much brighter foreground
emission. Such separation relies on the different spectral properties of the
two components, although, in real life, the foreground intrinsic spectrum is
often corrupted by the instrumental response, inducing systematic effects that
can further jeopardize the measurement of the 21-cm signal. In this paper, we
use Gaussian Process Regression to model both foreground emission and
instrumental systematics in hours of data from the Hydrogen Epoch of
Reionization Array. We find that a simple co-variance model with three
components matches the data well, giving a residual power spectrum with white
noise properties. These consist of an "intrinsic" and instrumentally corrupted
component with a coherence-scale of 20 MHz and 2.4 MHz respectively (dominating
the line of sight power spectrum over scales h
cMpc) and a baseline dependent periodic signal with a period of
MHz (dominating over h cMpc) which should
be distinguishable from the 21-cm EoR signal whose typical coherence-scales is
MHz
Automated Detection of Antenna Malfunctions in Large-N Interferometers: A case study With the Hydrogen Epoch of Reionization Array
We present a framework for identifying and flagging malfunctioning antennas in large radio
interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure
modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based
solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present
tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these
techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study.
Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets
Imaging and Modeling Data from the Hydrogen Epoch of Reionization Array
We analyze data from the Hydrogen Epoch of Reionization Array. This is the
third in a series of papers on the closure phase delay-spectrum technique
designed to detect the HI 21cm emission from cosmic reionization. We present
the details of the data and models employed in the power spectral analysis, and
discuss limitations to the process. We compare images and visibility spectra
made with HERA data, to parallel quantities generated from sky models based on
the GLEAM survey, incorporating the HERA telescope model. We find reasonable
agreement between images made from HERA data, with those generated from the
models, down to the confusion level. For the visibility spectra, there is broad
agreement between model and data across the full band of MHz. However,
models with only GLEAM sources do not reproduce a roughly sinusoidal spectral
structure at the tens of percent level seen in the observed visibility spectra
on scales MHz on 29 m baselines. We find that this structure is
likely due to diffuse Galactic emission, predominantly the Galactic plane,
filling the far sidelobes of the antenna primary beam. We show that our current
knowledge of the frequency dependence of the diffuse sky radio emission, and
the primary beam at large zenith angles, is inadequate to provide an accurate
reproduction of the diffuse structure in the models. We discuss implications
due to this missing structure in the models, including calibration, and in the
search for the HI 21cm signal, as well as possible mitigation techniques
Understanding the HERA Phase i receiver system with simulations and its impact on the detectability of the EoR delay power spectrum
The detection of the Epoch of Reionization (EoR) delay power spectrum using a
"foreground avoidance method" highly depends on the instrument chromaticity.
The systematic effects induced by the radio-telescope spread the foreground
signal in the delay domain, which contaminates the EoR window theoretically
observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this
paper combines detailed electromagnetic and electrical simulations in order to
model the chromatic effects of the instrument, and quantify its frequency and
time responses. In particular, the effects of the analogue receiver,
transmission cables, and mutual coupling are included. These simulations are
able to accurately predict the intensity of the reflections occurring in the
150-m cable which links the antenna to the back-end. They also show that
electromagnetic waves can propagate from one dish to another one through large
sections of the array due to mutual coupling. The simulated system time
response is attenuated by a factor after a characteristic delay which
depends on the size of the array and on the antenna position. Ultimately, the
system response is attenuated by a factor after 1400 ns because of the
reflections in the cable, which corresponds to characterizable
-modes above 0.7 at 150 MHz. Thus, this new
study shows that the detection of the EoR signal with HERA Phase I will be more
challenging than expected. On the other hand, it improves our understanding of
the telescope, which is essential to mitigate the instrument chromaticity
Automated Detection of Antenna Malfunctions in Large-N Interferometers: A Case Study With the Hydrogen Epoch of Reionization Array
We present a framework for identifying and flagging malfunctioning antennas in large radio interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study. Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets
Foreground modelling via Gaussian process regression: an application to HERA data
The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization
is its separation from the much brighter foreground emission. Such separation relies on the
different spectral properties of the two components, although, in real life, the foreground
intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects
that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian
Process Regression to model both foreground emission and instrumental systematics in ∼2 h
of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance
model with three components matches the data well, giving a residual power spectrum with
white noise properties. These consist of an ‘intrinsic’ and instrumentally corrupted component
with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power
spectrum over scales k ≤ 0.2 h cMpc−1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over k ∼ 0.4–0.8 h cMpc−1), which should be distinguishable
from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MH