48 research outputs found

    Receiver design for the REACH global 21-cm signal experiment

    Full text link
    We detail the the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach demonstrating a calibration RMSE of 80 mK for five hours of integration on a custom-made source with comparable impedance to that of the antenna used in the field. This paper therefore documents the state of the calibrator and data analysis in December 2022 in Cambridge before shipping to South Africa.Comment: 30 pages, 19 figure

    Automated Detection of Antenna Malfunctions in Large-N Interferometers: A case study With the Hydrogen Epoch of Reionization Array

    Get PDF
    We present a framework for identifying and flagging malfunctioning antennas in large radio interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study. Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets

    Imaging and Modeling Data from the Hydrogen Epoch of Reionization Array

    Get PDF
    We analyze data from the Hydrogen Epoch of Reionization Array. This is the third in a series of papers on the closure phase delay-spectrum technique designed to detect the HI 21cm emission from cosmic reionization. We present the details of the data and models employed in the power spectral analysis, and discuss limitations to the process. We compare images and visibility spectra made with HERA data, to parallel quantities generated from sky models based on the GLEAM survey, incorporating the HERA telescope model. We find reasonable agreement between images made from HERA data, with those generated from the models, down to the confusion level. For the visibility spectra, there is broad agreement between model and data across the full band of 80\sim 80MHz. However, models with only GLEAM sources do not reproduce a roughly sinusoidal spectral structure at the tens of percent level seen in the observed visibility spectra on scales 10\sim 10 MHz on 29 m baselines. We find that this structure is likely due to diffuse Galactic emission, predominantly the Galactic plane, filling the far sidelobes of the antenna primary beam. We show that our current knowledge of the frequency dependence of the diffuse sky radio emission, and the primary beam at large zenith angles, is inadequate to provide an accurate reproduction of the diffuse structure in the models. We discuss implications due to this missing structure in the models, including calibration, and in the search for the HI 21cm signal, as well as possible mitigation techniques

    Understanding the HERA Phase i receiver system with simulations and its impact on the detectability of the EoR delay power spectrum

    Get PDF
    The detection of the Epoch of Reionization (EoR) delay power spectrum using a "foreground avoidance method" highly depends on the instrument chromaticity. The systematic effects induced by the radio-telescope spread the foreground signal in the delay domain, which contaminates the EoR window theoretically observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this paper combines detailed electromagnetic and electrical simulations in order to model the chromatic effects of the instrument, and quantify its frequency and time responses. In particular, the effects of the analogue receiver, transmission cables, and mutual coupling are included. These simulations are able to accurately predict the intensity of the reflections occurring in the 150-m cable which links the antenna to the back-end. They also show that electromagnetic waves can propagate from one dish to another one through large sections of the array due to mutual coupling. The simulated system time response is attenuated by a factor 10410^{4} after a characteristic delay which depends on the size of the array and on the antenna position. Ultimately, the system response is attenuated by a factor 10510^{5} after 1400 ns because of the reflections in the cable, which corresponds to characterizable k{k_\parallel}-modes above 0.7 h  Mpc1h\;\rm{Mpc}^{-1} at 150 MHz. Thus, this new study shows that the detection of the EoR signal with HERA Phase I will be more challenging than expected. On the other hand, it improves our understanding of the telescope, which is essential to mitigate the instrument chromaticity

    Automated Detection of Antenna Malfunctions in Large-N Interferometers: A Case Study With the Hydrogen Epoch of Reionization Array

    Get PDF
    We present a framework for identifying and flagging malfunctioning antennas in large radio interferometers. We outline two distinct categories of metrics designed to detect outliers along known failure modes of large arrays: cross-correlation metrics, based on all antenna pairs, and auto-correlation metrics, based solely on individual antennas. We define and motivate the statistical framework for all metrics used, and present tailored visualizations that aid us in clearly identifying new and existing systematics. We implement these techniques using data from 105 antennas in the Hydrogen Epoch of Reionization Array (HERA) as a case study. Finally, we provide a detailed algorithm for implementing these metrics as flagging tools on real data sets

    Foreground modelling via Gaussian process regression: an application to HERA data

    Get PDF
    The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an ‘intrinsic’ and instrumentally corrupted component with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power spectrum over scales k ≤ 0.2 h cMpc−1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over k ∼ 0.4–0.8 h cMpc−1), which should be distinguishable from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MH
    corecore