174 research outputs found

    Validation of Calprotectin As a Novel Biomarker For The Diagnosis of Pleural Effusion: a Multicentre Trial

    Get PDF
    Discriminating between malignant pleural effusion (MPE) and benign pleural effusion (BPE) remains difficult. Thus, novel and efficient biomarkers are required for the diagnosis of pleural effusion (PE). The aim of this study was to validate calprotectin as a diagnostic biomarker of PE in clinical settings. A total of 425 patients were recruited, and the pleural fluid samples collected had BPE in 223 cases (53.7%) or MPE in 137 patients (33%). The samples were all analysed following the same previously validated clinical laboratory protocols and methodology. Calprotectin levels ranged from 772.48 to 3,163.8 ng/mL (median: 1,939 ng/mL) in MPE, and 3,216-24,000 ng/mL in BPE (median: 9,209 ng/mL; p < 0.01), with an area under the curve of 0.848 [95% CI: 0.810-0.886]. For a cut-off value of </= 6,233.2 ng/mL, we found 96% sensitivity and 60% specificity, with a negative and positive predictive value, and negative and positive likelihood ratios of 96%, 57%, 0.06, and 2.4, respectively. Multivariate analysis showed that low calprotectin levels was a better discriminator of PE than any other variable [OR 28.76 (p < 0.0001)]. Our results confirm that calprotectin is a new and useful diagnostic biomarker in patients with PE of uncertain aetiology which has potential applications in clinical practice because it may be a good complement to cytological methods

    Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae

    Get PDF
    Biosurfactants are biological tensioactive agents that can be used in the cosmetic and food industries. Rhamnolipids are glycolipid biosurfactants naturally produced by Pseudomonas aeruginosa and are composed of one or two rhamnose molecules linked to beta-hydroxy fatty acid chains. These compounds are green alternatives to petrochemical surfactants, but their large-scale production is still in its infancy, hindered due to pathogenicity of natural producer, high substrate and purification costs and low yields and productivities. This study, for the first time, aimed at producing mono-rhamnolipids from sucrose by recombinant GRAS Saccharomyces cerevisiae strains. Six enzymes from P. aeruginosa involved in mono-rhamnolipid biosynthesis were functionally expressed in the yeast. Furthermore, its SUC2 invertase gene was disrupted and a sucrose phosphorylase gene from Pelomonas saccharophila was also expressed to reduce the pathway\u27s overall energy requirement. Two strains were constructed aiming to produce mono-rhamnolipids and the pathway\u27s intermediate dTDP-L-rhamnose. Production of both molecules was analyzed by confocal microscopy and mass spectrometry, respectively. These strains displayed, for the first time as a proof of concept, the potential of production of these molecules by a GRAS eukaryotic microorganism from an inexpensive substrate. These constructs show the potential to further improve rhamnolipids production in a yeast-based industrial bioprocess

    Consistent patterns of common species across tropical tree communities

    Get PDF
    D.L.M.C. was supported by the London Natural Environmental Research Council Doctoral Training Partnership grant (grant no. NE/L002485/1). This paper developed from analysing data from the African Tropical Rainforest Observatory Network (AfriTRON), curated at ForestPlots.net. AfriTRON has been supported by numerous people and grants since its inception. We sincerely thank the people of the many villages and local communities who welcomed our field teams and without whose support this work would not have been possible. Grants that have funded the AfriTRON network, including data in this paper, are a European Research Council Advanced Grant (T-FORCES; 291585; Tropical Forests in the Changing Earth System), a NERC standard grant (NER/A/S/2000/01002), a Royal Society University Research Fellowship to S.L.L., a NERC New Investigators Grant to S.L.L., a Philip Leverhulme Award to S.L.L., a European Union FP7 grant (GEOCARBON; 283080), Leverhulme Program grant (Valuing the Arc); a NERC Consortium Grant (TROBIT; NE/D005590/), NERC Large Grant (CongoPeat; NE/R016860/1) the Gordon and Betty Moore Foundation the David and Lucile Packard Foundation, the Centre for International Forestry Research (CIFOR), and Gabon’s National Parks Agency (ANPN). This paper was supported by ForestPlots.net approved Research Project 81, ‘Comparative Ecology of African Tropical Forests’. The development of ForestPlots.net and data curation has been funded by several grants, including NE/B503384/1, NE/N012542/1, ERC Advanced Grant 291585—‘T-FORCES’, NE/F005806/1, NERC New Investigators Awards, the Gordon and Betty Moore Foundation, a Royal Society University Research Fellowship and a Leverhulme Trust Research Fellowship. Fieldwork in the Democratic Republic of the Congo (Yangambi and Yoko sites) was funded by the Belgian Science Policy Office BELSPO (SD/AR/01A/COBIMFO, BR/132/A1/AFRIFORD, BR/143/A3/HERBAXYLAREDD, FED-tWIN2019-prf-075/CongoFORCE, EF/211/TREE4FLUX); by the Flemish Interuniversity Council VLIR-UOS (CD2018TEA459A103, FORMONCO II); by L’Académie de recherche et d’enseignement supérieur ARES (AFORCO project) and by the European Union through the FORETS project (Formation, Recherche, Environnement dans la TShopo) supported by the XIth European Development Fund. EMV was supported by fellowship from the CNPq (Grant 308543/2021-1). RAPELD plots in Brazil were supported by the Program for Biodiversity Research (PPBio) and the National Institute for Amazonian Biodiversity (INCT-CENBAM). BGL post-doc grant no. 2019/03379-4, São Paulo Research Foundation (FAPESP). D.A.C. was supported by the CCI Collaborative fund. Plots in Mato Grosso, Brazil, were supported by the National Council for Scientific and Technological Development (CNPq), PELD-TRAN 441244/2016-5 and 441572/2020-0, and Mato Grosso State Research Support Foundation (FAPEMAT)—0346321/2021. We thank E. Chezeaux, R. Condit, W. J. Eggeling, R. M. Ewers, O. J. Hardy, P. Jeanmart, K. L. Khoon, J. L. Lloyd, A. Marjokorpi, W. Marthy, H. Ntahobavuka, D. Paget, J. T. A. Proctor, R. P. Salomão, P. Saner, S. Tan, C. O. Webb, H. Woell and N. Zweifel for contributing forest inventory data. We thank numerous field assistants for their invaluable contributions to the collection of forest inventory data, including A. Nkwasibwe, ITFC field assistant.Peer reviewe

    Impact of dose and surface features on plasmatic and liver concentrations of biodegradable polymeric nanocapsules.

    Get PDF
    The effect of polymeric nanocapsule dose on plasmatic and liver concentrations 20 min after intravenous administration in mice was evaluated. Nanocapsules were prepared with different polymers, namely, poly(D,Llactide) (PLA), polyethylene glycol-block-poly(D,L-lactide) (PLA-PEG), and PLA with chitosan (PLA-Cs) and compared with a nanoemulsion. These formulations were labelled with a phthalocyanine dye for fluorescent detection. The nanostructures had narrow size distributions upon separation by asymmetric flow field flow fractionation with static and dynamic light scattering detection, with average hydrodynamic diameters in the 130?300 nm range, negative zeta potentials, except PLA-Cs nanocapsules, which had a positive zeta potential. Flow cytometry revealed uptake mostly by monocytes and neutrophils in mice and human blood. PLA nanocapsules and the nanoemulsion showed dose-dependent plasma concentrations, where the percentage of plasmatic fluorescence increased with increasing administered dose. In contrast, PLA-PEG nanocapsules led to a dose-independent plasmatic profile. PLA-Cs nanocapsules showed the lowest plasmatic and liver levels of fluorescence at all administered doses and significant intravenous toxicity in mice. This work demonstrates the importance of considering the nanocarrier dose when evaluating pharmacokinetic and biodistribution data and emphasizes the role of surface features in determining the plasmatic and liver concentrations of a poorly soluble lipophilic encapsulated compound

    The Stock Market Evaluation of IPO-Firm Takeovers

    Full text link
    We conduct an event study to assess the stock market evaluation of public takeover announcements. Unlike the majority of previous research, we specifically focus on acquisitions targeted at newly public IPO-firms and show that the stock market positively evaluates these M&As as R&D. However, bidders' abnormal announcement returns are significantly lower for takeovers directed at targets with critical intangible assets and innovative capabilities inalienably bound to their initial owners than for those that have internally accumulated respective resources and capabilities. We explain these findings with the acquirer's post-acquisition dependence on continued access to the IPO-firm founders' target-specific human capital. Our results contribute to literature in that they show that the stock market perceives these potential impediments to successful exploitation of acquired strategic resources and thus identify a potential cause for heretofore mostly inconsistent evidence on bidder abnormal returns in corporate takeovers found in previous research

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosys-tems that provide many ecosystem services. Being monocots, tree palms are evo-lutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon se-questration and storage) and in terms of responses to climate change. We quanti-fied global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.Location: Tropical and subtropical moist forests.Time period: Current.Major taxa studied: Palms (Arecaceae).Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly asso-ciated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the mag-nitude and direction of the effect require additional work.Conclusions: Tree palms are not only quintessentially tropical, but they are also over-whelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (&gt;66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore