121 research outputs found

    Wastewater treatment plant as microplastics release source - Quantification and identification techniques

    Full text link
    [EN] The high presence of microplastics (MPs) in different sizes, materials and concentrations in the aquatic environment is a global concern due to their potential physically and chemically harm to aquatic organisms including mammals. Furthermore, the bioaccumulation of these compounds is leading to their ingestion by humans through the consumption of sea food and even through the terrestrial food chain. Even though conventional wastewater treatment plants are capable of eliminating more than 90% of the influent MPs, these systems are still the main source of MPs introduction in the environment due to the high volumes of effluents generated and returned to the environment. The amount of MPs dumped by WWTP is influenced by the configuration of the WWTP, population served and influent flow. Thus, the average of MP/L disposed vary widely depending on the region. In addition to MPs disposed in water bodies, more than 80% of these emerging contaminants, which enter the WWTP, are retained in biosolids that can be applied as fertilizers, representing a potential source of soil contamination. Due to the continuous disposal of MPs in the environment by effluent treatment systems and their polluting potential, separation and identification techniques have been assessed by several researchers, but unfortunately, there are no standard protocols for them. Aiming to provide insight about the relevance of studying the WWTP as source of MPs, this review summarizes the currently methodologies used to classify and identify them.Bretas Alvim, C.; Mendoza Roca, JA.; Bes-Piá, M. (2020). Wastewater treatment plant as microplastics release source - Quantification and identification techniques. Journal of Environmental Management. 255:1-11. https://doi.org/10.1016/j.jenvman.2019.109739S111255Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Ribeiro-Claro, P. J. A. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426-440. doi:10.1016/j.watres.2018.05.060Auta, H. S., Emenike, C. ., & Fauziah, S. . (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165-176. doi:10.1016/j.envint.2017.02.013Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572. doi:10.1016/j.jece.2013.10.011Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology & Biotechnology, 83(10), 1323-1338. doi:10.1002/jctb.1988Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. doi:10.1021/es201811sCarr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002Catarino, A. I., Thompson, R., Sanderson, W., & Henry, T. B. (2016). Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environmental Toxicology and Chemistry, 36(4), 947-951. doi:10.1002/etc.3608Chang, M. (2015). Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Marine Pollution Bulletin, 101(1), 330-333. doi:10.1016/j.marpolbul.2015.10.074Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic Ingestion by Zooplankton. Environmental Science & Technology, 47(12), 6646-6655. doi:10.1021/es400663fCourtene-Jones, W., Quinn, B., Murphy, F., Gary, S. F., & Narayanaswamy, B. E. (2017). Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Analytical Methods, 9(9), 1437-1445. doi:10.1039/c6ay02343fDevi, P., Das, U., & Dalai, A. K. (2016). In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of The Total Environment, 571, 643-657. doi:10.1016/j.scitotenv.2016.07.032Duemichen, E., Braun, U., Senz, R., Fabian, G., & Sturm, H. (2014). Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. Journal of Chromatography A, 1354, 117-128. doi:10.1016/j.chroma.2014.05.057Dümichen, E., Eisentraut, P., Bannick, C. G., Barthel, A.-K., Senz, R., & Braun, U. (2017). Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere, 174, 572-584. doi:10.1016/j.chemosphere.2017.02.010Dyachenko, A., Mitchell, J., & Arsem, N. (2017). Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Analytical Methods, 9(9), 1412-1418. doi:10.1039/c6ay02397eElert, A. M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., & Braun, U. (2017). Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environmental Pollution, 231, 1256-1264. doi:10.1016/j.envpol.2017.08.074Enders, K., Lenz, R., Beer, S., & Stedmon, C. A. (2016). Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. ICES Journal of Marine Science, 74(1), 326-331. doi:10.1093/icesjms/fsw173Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Environmental Science & Technology, 51(23), 13641-13648. doi:10.1021/acs.est.7b04512De Falco, F., Gullo, M. P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., … Avella, M. (2018). Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environmental Pollution, 236, 916-925. doi:10.1016/j.envpol.2017.10.057Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228. doi:10.1016/j.marpolbul.2009.04.025Fischer, M., & Scholz-Böttcher, B. M. (2017). Simultaneous Trace Identification and Quantification of Common Types of Microplastics in Environmental Samples by Pyrolysis-Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 51(9), 5052-5060. doi:10.1021/acs.est.6b06362Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M.-T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes & Impacts, 15(10), 1949. doi:10.1039/c3em00214dGies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. doi:10.1016/j.marpolbul.2018.06.006Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. (2019). Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68, 75-79. doi:10.1016/j.etap.2019.03.007Gündoğdu, S., Çevik, C., Güzel, E., & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment, 190(11). doi:10.1007/s10661-018-7010-yHanvey, J. S., Lewis, P. J., Lavers, J. L., Crosbie, N. D., Pozo, K., & Clarke, B. O. (2017). A review of analytical techniques for quantifying microplastics in sediments. Analytical Methods, 9(9), 1369-1383. doi:10.1039/c6ay02707eHe, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi:10.1016/j.trac.2018.10.006Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505Hidayaturrahman, H., & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. doi:10.1016/j.marpolbul.2019.06.071Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. de los A., Sanchez del Cid, L., Chi, C., … Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1). doi:10.1038/s41598-017-14588-2Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409-7417. doi:10.1021/acs.est.8b01517Jochem, G., & Lehnert, R. J. (2002). On the potential of Raman microscopy for the forensic analysis of coloured textile fibres. Science & Justice, 42(4), 215-221. doi:10.1016/s1355-0306(02)71831-5Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M., & Gotvajn, A. Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere, 188, 25-31. doi:10.1016/j.chemosphere.2017.08.131Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.-J., & Voit, B. (2016). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391. doi:10.1007/s00216-016-9956-3Käppler, A., Fischer, M., Scholz-Böttcher, B. M., Oberbeckmann, S., Labrenz, M., Fischer, D., … Voit, B. (2018). Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Analytical and Bioanalytical Chemistry, 410(21), 5313-5327. doi:10.1007/s00216-018-1185-5Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049Lei, K., Qiao, F., Liu, Q., Wei, Z., Qi, H., Cui, S., … An, L. (2017). Microplastics releasing from personal care and cosmetic products in China. Marine Pollution Bulletin, 123(1-2), 122-126. doi:10.1016/j.marpolbul.2017.09.016Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A., & Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100(1), 82-91. doi:10.1016/j.marpolbul.2015.09.026Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M., & Vethaak, A. D. (2017). Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International, 101, 133-142. doi:10.1016/j.envint.2017.01.018Li, J., Liu, H., & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. doi:10.1016/j.watres.2017.12.056Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., & Zeng, E. Y. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142, 75-85. doi:10.1016/j.watres.2018.05.034Liu, X., Yuan, W., Di, M., Li, Z., & Wang, J. (2019). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176-182. doi:10.1016/j.cej.2019.01.033Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., … Gerdts, G. (2017). Enzymatic Purification of Microplastics in Environmental Samples. Environmental Science & Technology, 51(24), 14283-14292. doi:10.1021/acs.est.7b03055Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., … Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research, 155, 255-265. doi:10.1016/j.watres.2019.02.028Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1). doi:10.1038/srep44501Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., … Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Science of The Total Environment, 652, 602-610. doi:10.1016/j.scitotenv.2018.10.269Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., & Morrison, L. (2016). Microplastics in Sewage Sludge: Effects of Treatment. Environmental Science & Technology, 51(2), 810-818. doi:10.1021/acs.est.6b04048Massonnet, G., Buzzini, P., Monard, F., Jochem, G., Fido, L., Bell, S., … Blumer, A. (2012). Raman spectroscopy and microspectrophotometry of reactive dyes on cotton fibres: Analysis and detection limits. Forensic Science International, 222(1-3), 200-207. doi:10.1016/j.forsciint.2012.05.025Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2000). Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology, 35(2), 318-324. doi:10.1021/es0010498Michielssen, M. R., Michielssen, E. R., Ni, J., & Duhaime, M. B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology, 2(6), 1064-1073. doi:10.1039/c6ew00207bMintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372. doi:10.1016/j.watres.2016.11.015Mohapatra, D. P., Cledón, M., Brar, S. K., & Surampalli, R. Y. (2016). Application of Wastewater and Biosolids in Soil: Occurrence and Fate of Emerging Contaminants. Water, Air, & Soil Pollution, 227(3). doi:10.1007/s11270-016-2768-4Munno, K., Helm, P. A., Jackson, D. A., Rochman, C., & Sims, A. (2017). Impacts of temperature and selected chemical digestion methods on microplastic particles. Environmental Toxicology and Chemistry, 37(1), 91-98. doi:10.1002/etc.3935Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416Naidoo, T., Goordiyal, K., & Glassom, D. (2017). Are Nitric Acid (HNO3) Digestions Efficient in Isolating Microplastics from Juvenile Fish? Water, Air, & Soil Pollution, 228(12). doi:10.1007/s11270-017-3654-4Napper, I. E., Bakir, A., Rowland, S. J., & Thompson, R. C. (2015). Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin, 99(1-2), 178-185. doi:10.1016/j.marpolbul.2015.07.029Ng, E.-L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H.-W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377-1388. doi:10.1016/j.scitotenv.2018.01.341Nizzetto, L., Futter, M., & Langaas, S. (2016). Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science & Technology, 50(20), 10777-10779. doi:10.1021/acs.est.6b04140Nuelle, M.-T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161-169. doi:10.1016/j.envpol.2013.07.027Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. doi:10.1016/j.trac.2018.10.029Qiu, Q., Tan, Z., Wang, J., Peng, J., Li, M., & Zhan, Z. (2016). Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuarine, Coastal and Shelf Science, 176, 102-109. doi:10.1016/j.ecss.2016.04.012Rios Mendoza, L. M., Karapanagioti, H., & Álvarez, N. R. (2018). Micro(nanoplastics) in the marine environment: Current knowledge and gaps. Current Opinion in Environmental Science & Health, 1, 47-51. doi:10.1016/j.coesh.2017.11.004Rocha-Santos, T. A. P. (2018). Editorial overview: Micro and nano-plastics. Current Opinion in Environmental Science & Health, 1, 52-54. doi:10.1016/j.coesh.2018.01.003Rocha-Santos, T., & Duarte, A. C. (2015). A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends in Analytical Chemistry, 65, 47-53. doi:10.1016/j.trac.2014.10.011Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 142, 1-9. doi:10.1016/j.watres.2018.05.019Sujathan, S., Kniggendorf, A.-K., Kumar, A., Roth, B., Rosenwinkel, K.-H., & Nogueira, R. (2017). Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge. Archives of Environmental Contamination and Toxicology, 73(4), 641-648. doi:10.1007/s00244-017-0415-8Tagg, A. S., Harrison, J. P., Ju-Nam, Y., Sapp, M., Bradley, E. L., Sinclair, C. J., & Ojeda, J. J. (2017). Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chemical Communications, 53(2), 372-375. doi:10.1039/c6cc08798aTalvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. doi:10.1016/j.watres.2017.07.005Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. doi:10.1016/j.watres.2016.11.046Von Friesen, L. W., Granberg, M. E., Hassellöv, M., Gabrielsen, G. W., & Magnusson, K. (2019). An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue. Marine Pollution Bulletin, 142, 129-134. doi:10.1016/j.marpolbul.2019.03.016Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., … Hughes, K. A. (2017). Microplastics in the Antarctic marine system: An emerging area of research. Science of The Total Environment, 598, 220-227. doi:10.1016/j.scitotenv.2017.03.283Wang, W., & Wang, J. (2018). Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC Trends in Analytical Chemistry, 108, 195-202. doi:10.1016/j.trac.2018.08.026Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.04

    The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction

    Full text link
    [EN] In this work, six identical laboratory SBRs treating simulated wastewater were operated in parallel studying the effect of three food-to-microorganisms ratio (F/M ratio; 0.20, 0.35 and 0.50 kg COD¿kg MLSS-1¿d-1), two hydraulic retention times (HRT; 24 and 16 h) and two values of number of cycles per day (3 and 6). Influence of these operational parameters on the SMPs production and reactor performance, were studied. Results indicated that the highest F/M ratio, HRT and cycles/day produced 72.7% more of SMP. In a second experimental series, biological process yielding the maximal and the minimal SMPs production were replicated and both mixed liquors (ML) and treated effluents were ultrafiltrated. The flux decay in the conditions of minimum and maximum SMPs production were 52% and 72%, when the SBRs effluents were ultrafiltrated while no significant differences in the ultrafiltration of ML were found. In terms of permeability recovery, this was lower for the case of the ML (73% and 49% of initial permeability recovered for effluent and ML ultrafiltration, respectively).This work was supported by the Spanish Ministerio de Economia y Competitividad (CTM2014-54546-P).Ferrer-Polonio, E.; White, K.; Mendoza Roca, JA.; Bes-Piá, M. (2018). The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction. Journal of Environmental Management. 228:205-212. https://doi.org/10.1016/j.jenvman.2018.09.036S20521222

    Diseño de los procesos de concentración en la línea de fangos de una EDAR

    Full text link
    En este artículo docente se explica cómo diseñar los equipos que se emplean habitualmente para concentrar fangos en las Estaciones Depuradoras de Aguas Residuales.Bes Piá, MA.; Mendoza Roca, JA. (2013). Diseño de los procesos de concentración en la línea de fangos de una EDAR. http://hdl.handle.net/10251/3112

    Membrane fouling in whey processing and subsequent cleaning with ultrasounds for a more sustainable process

    Full text link
    [EN] Cost reduction and minimization of environmental impacts, based on by-product recovery, is the objective of applying the ultrafiltration technology for the treatment of cheese whey. In this work, ultrafiltration process was studied in an integrated way (filtration and membrane cleaning), focusing especially on the membrane cleaning. Membrane cleaning experiments were carried out with and without ultrasounds to evaluate the effect of ultrasounds on the membrane cleaning efficiency and, as a result, to reduce the consumption of chemicals. Tests were performed with two ultrafiltration polymeric membranes with molecular weight cut-offs of 30,000 Da (UH030) and 5000 Da (UP005). Fouling experiments were carried out with Renylat whey protein concentrate solutions and CaCl2 addition at a transmembrane pressure of 2 bar and cross flow velocity of 2 m/s during 2 h. Results showed that the presence of calcium increased the membrane fouling of both membranes. For UH030 membrane the reversible fouling prevailed over the irreversible fouling, meanwhile for UP005 membrane the irreversible fouling was the predominant one. Cleaning efficiency results demonstrated that ultrasounds application is an effective technique to clean ultrafiltration membranes after being fouled with whey protein concentrate solutions and may have a paramount importance on the overall process efficiency.This work was supported by the Spanish Ministry of Science and Innovation (CTM 2010-20.186).Luján Facundo, MJ.; Mendoza Roca, JA.; Cuartas Uribe, BE.; Alvarez Blanco, S. (2017). Membrane fouling in whey processing and subsequent cleaning with ultrasounds for a more sustainable process. Journal of Cleaner Production. 143:804-813. https://doi.org/10.1016/j.jclepro.2016.12.043S80481314

    Study of membrane cleaning with and without ultrasounds application after fouling with three model dairy solutions

    Full text link
    The aim of this study was to investigate the behavior of two ultrafiltration (UF) membranes after their fouling with different fouling solutions and cleaning with a surfactant, including the application of ultrasounds (US). Thus,two UF membranes (UH030 and UP005) were fouled with three different whey model solutions that consisted of bovine serum albumin (BSA) with a concentration of 1% (w/w), BSA (1%, w/w) plus CaCl2 with a concentration of 0.17% (w/w) and whey solution (Renylat 45) with a concentration of 2.22% (w/w). Chemical cleaning was carried out with P3 Ultrasil 115 solution at temperatures between 25 ◦C and 45 ◦C and concentrations in the range between 0.5% (v/v) and 0.9% (v/v). US were applied in some ofthe tests at a frequency of 20 kHz and nominal power of 300W. The results demonstrated that US cleaning was effective to enhance the permeability recovery, although this enhancement was only up to 9%. Concerning fouling, results from resistances calculations showed that for UH030 membrane prevails the reversible fouling whereas for UP005 membrane predominate irreversible foulingThis work was supported by the Spanish Ministry of Science and Innovation (CTM 2010-20.186).Luján Facundo, MJ.; Mendoza Roca, JA.; Cuartas Uribe, BE.; Alvarez Blanco, S. (2016). Study of membrane cleaning with and without ultrasounds application after fouling with three model dairy solutions. Food and Bioproducts Processing. 100:36-46. https://doi.org/10.1016/j.fbp.2016.06.011S364610

    Assessment of Microplastics Distribution in a Biological Wastewater Treatment

    Full text link
    [EN] Full-scale wastewater treatment facilities are not able to prevent microplastics (MPs) from discharging into natural waters and they are also associated with the land application of the sludge. This study evaluates the distribution of microfibers (MFs) in a lab-scale sequencing batch reactor (SBR) fed by synthetic wastewater (SW) for 93 days. The MFs were analyzed through optical microscopy in the mixed liquor (ML) and the effluent, and sulfuric acid digestion was applied to discriminate between natural and synthetic MFs (i.e., MPs). The results of the optical microscopy analyses were further validated through FTIR spectroscopy. A model describing the evolution over time of the MF concentration in the ML was created, accounting for the MFs entering the system through the SW and atmospheric deposition. The ratio between the MF concentration in the ML and the effluent was 1409 ± 781, demonstrating that MFs settle with the sludge. Consistently, in the ML, 64.9% of the recovered MFs were smaller than 1000 µm (average size 968 µm), while in the effluent, 76.1% of MFs were smaller than 1000 µm (average size 772 µm). Overall, 72% of MFs recovered from the ML were natural fibers and sulfuric acid digestion was successful in eliminating the natural MFs.This research was funded by the Spanish Ministry of Science, Innovation and Universities (grant number: RTI2018-096916-B-I00).Castelluccio, S.; Alvim, CB.; Bes-Piá, M.; Mendoza Roca, JA.; Fiore, S. (2022). Assessment of Microplastics Distribution in a Biological Wastewater Treatment. Microplastics. 1(1):141-155. https://doi.org/10.3390/microplastics10100091411551

    Evaluation of Original and Enzyme-Modified Fique Fibers as an Azo Dye Biosorbent Material

    Full text link
    [EN] As natural fibers, low-cost biosorbents have proven to be an effective and clean tool to remove textile dyes from wastewater. In this research, the Reactive Black 5 removal ability of original and enzyme-modified natural fibers were assessed. A fiber extracted from a Colombian fique plant (Furcraea sp.) was employed. The effects of fique fiber protonation with different solvents and dye solution pH on RB5 removal were evaluated. The biosorbent chemical composition was modified using the commercial enzymes pectinase, ligninase, and xylanase. The point of zero charge (PZC) of the original and modified material was measured, and the dye removal capacity of the three enzyme-modified fibers was determined. Fiber protonation with 0.1 M HCl and a dye solution with pH of 2.4 increased the RB5 elimination to 49.1%. The change in the fiber chemical composition led to a reduction in the PZC from 5.5 to a 4.7¿4.9 range. Pectinase-pretreated fique fibers presented the highest dye removal of 66.29%, representing a 36% increase in RB5 dye removal. Although the original fique fiber showed RB5 dye removal ability, its enzymatic modification changed the charge distribution on the fiber surface, improving the capture of dye molecules. Enzyme modification can be applied to obtain new functionalities for plant fibers as biosorbent materials.This research was funded by Ministry of Science, Technology and Innovation of Colombia (MINCIENCIAS), Becas Doctorados Nacionales, grant number 617-2013.Muñoz-Blandón, O.; Ramírez-Carmona, M.; Cuartas Uribe, BE.; Mendoza Roca, JA. (2022). Evaluation of Original and Enzyme-Modified Fique Fibers as an Azo Dye Biosorbent Material. Water. 14(7):1-15. https://doi.org/10.3390/w1407103511514

    Influence of organic matter type in wastewater on soluble microbial products production and on further ultrafiltration

    Full text link
    [EN] BACKGROUND Membrane fouling is the main limiting factor for the application of ultrafiltration (UF) to wastewater treatment as tertiary treatment or in membrane bioreactors. Soluble microbial products (SMP) play the more important role on membrane fouling. In this work, four sequencing batch reactors were operated in parallel using two different simulated wastewaters under operating conditions maximizing and minimizing SMP production. The aim was to study the influence of the wastewater type, which until now has hardly been considered, on SMP production and, consequently, on membrane fouling. RESULTS AND CONCLUSION Results showed that organic matter (OM) type in wastewater greatly influenced SMP production and composition (protein : carbohydrate ratio). The food¿to¿microorganisms (F : M) ratio also significantly influenced SMP production. The lowest protein : carbohydrate ratio was achieved for wastewater containing sodium acetate as OM source at a F : M = 0.2. Finally, both mixed liquor and treated effluent were subjected to an ultrafiltration (UF) process and it was confirmed that the carbohydrate concentration in SMP was the main parameter influencing membrane fouling when the reactor effluent was fed to the UF process.This work was supported by the Spanish Ministerio de Economia y Competitividad. (CTM2014-54546-P).Ferrer-Polonio, E.; Fernández-Navarro, J.; Alonso Molina, JL.; Bes-Piá, M.; Mendoza Roca, JA. (2018). Influence of organic matter type in wastewater on soluble microbial products production and on further ultrafiltration. Journal of Chemical Technology & Biotechnology. 93(11):3284-3291. https://doi.org/10.1002/jctb.5689S32843291931

    Effect of 4-nonylphenol on the performance and microbial community of a sequencing batch reactor

    Full text link
    [EN] 4-nonylphenol (4-NP) is one of the most relevant endocrine-disrupting compounds that can be found in wastewaters. In this work, the effect of dosing 1 mg center dot L 1 of 4-NP to simulated wastewater on the activated sludge process was assessed. For it, two laboratory sequencing batch reactors (SBR) were operated for 94 days, adding 1 mg center dot L 1 of 4-NP to the wastewater entering one of them (SBR-NP), while the other one (SBR-B) worked as a control reactor. Holistic study of 4-NP influence on activated sludge treatment was carried out, which included both the evolution of the biomass characteristics and the effect of this substance on reactor performance. Although the COD removal efficiency in SBR-NP was lower than in the reactor without 4-NP addition (SBR-B), COD removal efficiency of SBR-NP was always higher than 90%. From day 50, nitrification bacteria were inhibited in SBR-NP and cellular viability decreased from 85.7 +/- 11.0% in the first 50 days to 63.0 +/- 10.2% in the last 44 days. Concerning the microbial community analysis, both Nitrosomonas and Nitrospira abundances decreased in SBR-NP (from 0.62% to 0.45%, and from 2.39% to 1.01%, respectively). Proteobacteria abundance was considerably higher in SBR-NP at the end of the experiment (44.28% in SBR-NP and 25.88% in SBR-B), which was due to increase of Aquabacterium genus (13.00% and 0.00% in SBR-NP and SBR-B, respectively), playing an important role in 4-NP degradation. Thus, 4-NP presence, in the concentrations studied, affected heterotrophic and autotrophic bacteria differently, having a negative effect in the second group.Acknowledgements Authors thank the Spanish Ministry of Science, Innovation and Universities for the financial support (Reference of the project: RTI2018-096916-B-I00) .Ferrer-Polonio, E.; Fernández-Navarro, J.; Mendoza Roca, JA.; Bes-Piá, M.; Alonso Molina, JL. (2022). Effect of 4-nonylphenol on the performance and microbial community of a sequencing batch reactor. Journal of Environmental Chemical Engineering. 10(2):1-9. https://doi.org/10.1016/j.jece.2022.1072491910

    Influence of operating conditions on ceramic ultrafiltration membrane performance when treating textile effluents

    Get PDF
    This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO2–TiO2) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s−1 as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions
    corecore