52 research outputs found

    Astrocyte reactivity to Fas activation is attenuated in TIMP-1 deficient mice, an in vitro study

    Get PDF
    BACKGROUND: Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional secreted protein with pleiotropic actions, including the inhibition of matrix metalloproteinases (MMPs), cell death/survival and growth promoting activities. After inflammatory challenge, the levels of TIMP-1 are highly and selectively upregulated in astrocytes among glial cells, but little is know about its role in these neural cells. We investigated the influence of TIMP-1 null mutation in the reactivity of cultured astrocytes to pro-inflammatory stimuli with TNF-α and anti-Fas antibody. RESULTS: When compared to WT, mutant astrocytes displayed an overall increased constitutive gelatinase expression and were less responsive to Fas-mediated upregulation of MMP-9, of monocyte chemoattractant protein-1 (MCP-1) and of intercellular cell adhesion molecule-1 (ICAM-1), all markers of astrocyte inflammatory response. In contrast, TNF-α treatment induced all these factors similarly regardless of the astrocyte genotype. The incorporation of (3)H-thymidin, a marker of cell proliferation, increased in wild-type (WT) astrocytes after treatment with anti-Fas antibody or recombinant TIMP-1 but not in mutant astrocytes. Finally, lymphocyte chemotaxis was differentially regulated by TNF-α in WT and TIMP-1 deficient astrocytes. CONCLUSION: We provide evidence that the alteration of the MMP/TIMP balance in astrocytes influences their reactivity to pro-inflammatory stimuli and that Fas activation modulates the expression of members of the MMP/TIMP axis. We hypothesise that the Fas/FasL transduction pathway and the MMP/TIMP system interact in astrocytes to modulate their inflammatory response to environmental stimuli

    Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis

    Get PDF
    International audienceContactin-associated protein-like 2 (Caspr2), also known as CNTNAP2, is a cell adhesion molecule that clusters voltage-gated potassium channels (Kv1.1/1.2) at the juxtaparanodes of myelinated axons and may regulate axonal excitability. As a component of the Kv1 complex, Caspr2 has been identified as a target in neuromyotonia and Morvan syndrome, but also in some cases of autoimmune limbic encephalitis (LE). How anti-Caspr2 autoimmunity is linked with the central neurological symptoms is still elusive. In the present study, using anti-Caspr2 antibodies from seven patients affected by pure LE, we determined that IgGs in the cerebrospinal fluid of four out seven patients were selectively directed against the N-terminal DiscoĂŻdin and LamininG1 modules of Caspr2. Using live immunolabeling of cultured hippocampal neurons, we determined that serum IgGs in all patients strongly targeted inhibitory interneurons. Caspr2 was highly detected on GAD65-positive axons that are surrounding the cell bodies and at the VGAT-positive inhibitory presynaptic contacts. Functional assays indicated that LE autoantibodies may induce alteration of Gephyrin clusters at inhibitory synaptic contacts. Next, we generated a Caspr2-Fc chimera to reveal Caspr2 receptors on hippocampal neurons localized at the somato-dendritic compartment and post-synapse. Caspr2-Fc binding was strongly increased on TAG-1-transfected neurons and conversely, Caspr2-Fc did not bind hippocampal neurons from TAG-1-deficient mice. Our data indicate that Caspr2 may participate as a cell recognition molecule in the dynamics of inhibitory networks. This study provides new insight into the potential pathogenic effect of anti-Caspr2 autoantibodies in central hyperexcitability that may be related with perturbation of inhibitory interneuron activity

    Pathologies Associated with Serum IgG4 Elevation

    Get PDF
    Statement of Purpose. IgG4-related disease (IgG4-RD) is usually associated to an increase of serum IgG4 levels. However other conditions have also been associated to high serum IgG4 levels. Methods. All IgG subclasses analyses performed in our hospital over a one-year period were analyzed. When IgG4 level were over 1.35 g/L, the patient’s clinical observation was analyzed and both final diagnosis and reason leading to IgG subclasses analysis were recorded. Only polyclonal increases of IgG4 were considered. Summary of the Results. On 646 IgG subclass analysis performed, 59 patients had serum IgG4 over 1.35 g/L. The final diagnosis associated to serum IgG4 increase was very variable. Most patients (25%) presented with repeated infections, 13.5% with autoimmune diseases, and 10% with IgG4-RD. Other patients presented with cancer, primary immune deficiencies, idiopathic interstitial lung disease, cystic fibrosis, histiocytosis, or systemic vasculitis and 13.5% presented with various pathologies or no diagnosis. Mean IgG4 levels and IgG4/IgG ratio were higher in IgG4-RD than in other pathologies associated to elevated IgG4 levels. Conclusions. Our study confirms that elevation of serum IgG4 is not specific to IgG4-RD. Before retaining IgG4-RD diagnosis in cases of serum IgG4 above 1.35 g/L, several other pathological conditions should be excluded

    Cytotoxic CD8<sup>+</sup> T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons.

    Get PDF
    Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4 &lt;sup&gt;+&lt;/sup&gt; T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8 &lt;sup&gt;+&lt;/sup&gt; T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8 &lt;sup&gt;+&lt;/sup&gt; T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8 &lt;sup&gt;+&lt;/sup&gt; T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1) &lt;sup&gt;G93A&lt;/sup&gt; mutant decreased spinal motoneuron loss. Using motoneuron-CD8 &lt;sup&gt;+&lt;/sup&gt; T cell coculture systems, we found that mutant SOD1-expressing CD8 &lt;sup&gt;+&lt;/sup&gt; T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron and SOD1 &lt;sup&gt; G93A &lt;/sup&gt; CD8 &lt;sup&gt;+&lt;/sup&gt; T cells. Activated mutant SOD1 CD8 &lt;sup&gt;+&lt;/sup&gt; T cells produce interferon-Îł, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8 &lt;sup&gt;+&lt;/sup&gt; T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS

    The NKG2D Ligands RAE-1Ύ and RAE-1Δ Differ with Respect to Their Receptor Affinity, Expression Profiles and Transcriptional Regulation

    Get PDF
    BACKGROUND: RAE-1 is a ligand of the activating receptor NKG2D expressed by NK cells, NKT, γΎT and some CD8(+)T lymphocytes. RAE-1 is overexpressed in tumor cell lines and its expression is induced after viral infection and genotoxic stress. We have recently demonstrated that RAE-1 is expressed in the adult subventricular zone (SVZ) from C57BL/6 mice. RAE-1 is also expressed in vitro by neural stem/progenitor cells (NSPCs) and plays a non-immune role in cell proliferation. The C57BL/6 mouse genome contains two rae-1 genes, rae-1Ύ and rae-1Δ encoding two different proteins. The goals of this study are first to characterize the in vivo and in vitro expression of each gene and secondly to elucidate the mechanisms underlying their respective expression, which are far from known. PRINCIPAL FINDINGS: We observed that Rae-1Ύ and Rae-1Δ transcripts are differentially expressed according to tissues, pathological conditions and cell lines. Embryonic tissue and the adult SVZ mainly expressed Rae-1Ύ transcripts. The NSPCs derived from the SVZ also mainly expressed RAE-1Ύ. The interest of this result is especially related to the observation that RAE-1Ύ is a weak NKG2D ligand compared to RAE-1Δ. On the contrary, cell lines expressed either similar levels of RAE-1Ύ and RAE-1Δ proteins or only RAE-1Δ. Since the protein expression correlated with the level of transcripts for each rae-1 gene, we postulated that transcriptional regulation is one of the main processes explaining the difference between RAE-1Ύ and RAE-1Δ expression. We indeed identified two different promoter regions for each gene: one mainly involved in the control of rae-1Ύ gene expression and the other in the control of rae-1Δ expression. CONCLUSIONS/SIGNIFICANCE: RAE-1Ύ and RAE-1Δ differ with respect to their function and the control of their expression. Immune function would be mainly exerted by RAE-1Δ and non-immune function by RAE-1Ύ

    Les molécules du CMH [Complexe Majeur d'Histocompatibilité] de classe I apparentées, CD1d et Rae-1, sont exprimées dans le systÚme nerveux adulte

    No full text
    Les molécules CMH-Ia jouent des rÎles dans le développement neuronal et la plasticité synaptique. Nous avons analysé, chez la souris, l'expression des molécules apparentées à la famille du CMH de classe I, CD1d, molécule de présentation de glycolipides et Rae-1, ligand d'un récepteur activateur, NKG2D. CD1d est exprimé dans l'ensemble des tissus nerveux et par toutes les cellules neurales testées, dont les cellules souches issues de la SVZ. Des transcrits de Rae-1 sont absents de la plupart des tissus sauf certaines, dont la SVZ. Les neurosphÚres issues de la SVZ expriment Rae-1 et perdent cette expression aprÚs adhésion. L'obtention d'une lignée cellulaire à partir de l'épithélium olfactif nasal, trÚs fortement CD1d et Rae-1 positive a permis de démontrer l'importance de l'environnement membranaire sur leurs fonctions. Nous avons enfin obtenu des constructions codant pour des molécules CD1d et Rae-1-EGFP et décrit des transcrits alternatifs de CD1d respectant le cadre de lecture.AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Radeaux lipidiques et présentation antigénique restreinte par CD1d

    No full text
    AIX-MARSEILLE2-BU Pharmacie (130552105) / SudocSudocFranceF
    • 

    corecore