4 research outputs found
Discovery of X-ray polarization angle rotation in active galaxy Mrk 421
The magnetic field conditions in astrophysical relativistic jets can be
probed by multiwavelength polarimetry, which has been recently extended to
X-rays. For example, one can track how the magnetic field changes in the flow
of the radiating particles by observing rotations of the electric vector
position angle . Here we report the discovery of a
rotation in the X-ray band in the blazar Mrk 421 at an average flux state.
Across the 5 days of Imaging X-ray Polarimetry Explorer (IXPE) observations of
4-6 and 7-9 June 2022, rotated in total by .
Over the two respective date ranges, we find constant, within uncertainties,
rotation rates ( and ) and polarization
degrees (). Simulations of a random walk of the
polarization vector indicate that it is unlikely that such rotation(s) are
produced by a stochastic process. The X-ray emitting site does not completely
overlap the radio/infrared/optical emission sites, as no similar rotation of
was observed in quasi-simultaneous data at longer wavelengths. We
propose that the observed rotation was caused by a helical magnetic structure
in the jet, illuminated in the X-rays by a localized shock propagating along
this helix. The optically emitting region likely lies in a sheath surrounding
an inner spine where the X-ray radiation is released
Magnetic Field Properties inside the Jet of Mrk 421: Multiwavelength Polarimetry Including the Imaging X-ray Polarimetry Explorer
We conducted a polarimetry campaign from radio to X-ray wavelengths of the
high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry
Explorer (IXPE) measurements on 2022 December 6-8. We detected X-ray
polarization of Mrk 421 with a degree of =141 and an
electric-vector position angle =1073 in the 2-8
keV band. From the time variability analysis, we find a significant episodic
variation in . During 7 months from the first IXPE pointing of
Mrk 421 in 2022 May, varied across the range of 0 to
180, while maintained similar values within
10-15. Furthermore, a swing in in 2022 June was
accompanied by simultaneous spectral variations. The results of the
multiwavelength polarimetry show that the X-ray polarization degree was
generally 2-3 times greater than that at longer wavelengths, while the
polarization angle fluctuated. Additionally, based on radio, infrared, and
optical polarimetry, we find that rotation of occurred in the opposite
direction with respect to the rotation of over longer timescales
at similar epochs. The polarization behavior observed across multiple
wavelengths is consistent with previous IXPE findings for HSP blazars. This
result favors the energy-stratified shock model developed to explain variable
emission in relativistic jets. The accompanying spectral variation during the
rotation can be explained by a fluctuation in the physical
conditions, e.g., in the energy distribution of relativistic electrons. The
opposite rotation direction of between the X-ray and longer-wavelength
polarization accentuates the conclusion that the X-ray emitting region is
spatially separated from that at longer wavelengths.Comment: 17 pages, 13 figures, 4 tables; Accepted for publication in A&
Evidence-based recommendations for the therapeutic management of angioedema owing to hereditary C1 inhibitor deficiency: consensus report of an International Working Group
A ngioedema owing to hereditary deficiency of C1 inhibitor (HAE) is a rare, life-threatening, disabling disease. In the last 2 years, the results of well-designed and controlled trials with existing and new therapies for this condition have been published, and new treatments reached the market. Current guidelines for the treatment for HAE were released before the new trials and before the new treatments became available and were essentially based on observational studies and expert opinion. To provide evidence-based HAE treatment guidelines supported by the new studies, a conference was held in Gargnano del Garda, Italy, from September 26 to 29, 2010. The meeting hosted 58 experienced HAE expert physicians, representatives of pharmaceutical companies and representatives of HAE patients' associations. Here, we report the topics discussed during the meeting and evidence-based consensus about management approaches for HAE in adult/adolescent patients
Magnetic field properties inside the jet of Mrk 421. Multiwavelength polarimetry, including the Imaging X-ray Polarimetry Explorer
International audience Aims: We aim to probe the magnetic field geometry and particle acceleration mechanism in the relativistic jets of supermassive black holes. Methods: We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements from 2022 December 6-8. During the IXPE observation, we also monitored Mrk 421 using Swift-XRT and obtained a single observation with XMM-Newton to improve the X-ray spectral analysis. The time-averaged X-ray polarization was determined consistently using the event-by-event Stokes parameter analysis, spectropolarimetric fit, and maximum likelihood methods. We examined the polarization variability over both time and energy, the former via analysis of IXPE data obtained over a time span of 7 months. Results: We detected X-ray polarization of Mrk 421 with a degree of Î X = 14 ± 1% and an electric-vector position angle ÏX = 107 ± 3° in the 2-8 keV band. From the time variability analysis, we find a significant episodic variation in ÏX. During the 7 months from the first IXPE pointing of Mrk 421 in 2022 May, ÏX varied in the range 0° to 180°, while Î X remained relatively constant within âŒ10-15%. Furthermore, a swing in ÏX in 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that Î X was generally âŒ2-3 times greater than Î at longer wavelengths, while Ï fluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that the rotation of Ï occurred in the opposite direction with respect to the rotation of ÏX and over longer timescales at similar epochs. Conclusions: The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. We considered two versions of the model, one with linear and the other with radial stratification geometry, to explain the rotation of ÏX. The accompanying spectral variation during the ÏX rotation can be explained by a fluctuation in the physical conditions, for example in the energy distribution of relativistic electrons. The opposite rotation direction of Ï between the X-ray and longer wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths. Moreover, we identify a highly polarized knot of radio emission moving down the parsec-scale jet during the episode of ÏX rotation, although it is unclear whether there is any connection between the two events