424 research outputs found

    Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib

    Get PDF
    Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic

    Cell Cycle-Related Cyclin B1 Quantification

    Get PDF
    To obtain non-relative measures of cell proteins, purified preparations of the same proteins are used as standards in Western blots. We have previously quantified SV40 large T antigen expressed over a several fold range in different cell lines and correlated the average number of molecules to average fluorescence obtained by cytometry and determined cell cycle phase related expression by calculation from multi-parametric cytometry data. Using a modified approach, we report quantification of endogenous cyclin B1 and generation of the cell cycle time related expression profile.Recombinant cyclin B1 was purified from a baculovirus lysate using an antibody affinity column and concentrated. We created fixed cell preparations from nocodazole-treated (high cyclin B1) and serum starved (low cyclin B1) PC3 cells that were either lyophilized (for preservation) or solubilized. The lysates and purified cyclin B1 were subjected to Western blotting; the cell preparations were subjected to cytometry, and fluorescence was correlated to molecules. Three untreated cell lines (K562, HeLa, and RKO) were prepared for cytometry without lyophilization and also prepared for Western blotting. These were quantified by Western blotting and by cytometry using the standard cell preparations.The standard cell preparations had 1.5 x 10(5) to 2.5 x 10(6) molecules of cyclin B1 per cell on average (i.e., 16-fold range). The average coefficient of variation was 24%. Fluorescence varied 12-fold. The relationship between molecules/cell (Western blot) and immunofluorescence (cytometry) was linear (r(2) = 0.87). Average cyclin B1 levels for the three untreated cell lines determined by Western blotting and cytometry agreed within a factor of 2. The non-linear rise in cyclin B1 in S phase was quantified from correlated plots of cyclin B1 and DNA content. The peak levels achieved in G2 were similar despite differences in lineage, growth conditions, and rates of increase through the cell cycle (range: 1.6-2.2 x 10(6) molecules per cell).Net cyclin B1 expression begins in G1 in human somatic cells lines; increases non-linearly with variation in rates of accumulation, but peaks at similar peak values in different cell lines growing under different conditions. This suggests tight quantitative end point control

    Preventive drugs in the last year of life of older adults with cancer: Is there room for deprescribing?

    Get PDF
    BACKGROUND: The continuation of preventive drugs among older patients with advanced cancer has come under scrutiny because these drugs are unlikely to achieve their clinical benefit during the patients' remaining lifespan. METHODS: A nationwide cohort study of older adults (those aged ≥65 years) with solid tumors who died between 2007 and 2013 was performed in Sweden, using routinely collected data with record linkage. The authors calculated the monthly use and cost of preventive drugs throughout the last year before the patients' death. RESULTS: Among 151,201 older persons who died with cancer (mean age, 81.3 years [standard deviation, 8.1 years]), the average number of drugs increased from 6.9 to 10.1 over the course of the last year before death. Preventive drugs frequently were continued until the final month of life, including antihypertensives, platelet aggregation inhibitors, anticoagulants, statins, and oral antidiabetics. Median drug costs amounted to 1482(interquartilerange[IQR],1482 (interquartile range [IQR], 700-2896])perperson,including2896]) per person, including 213 (IQR, 7777-490) for preventive therapies. Compared with older adults who died with lung cancer (median drug cost, 205;IQR,205; IQR, 61-523),costsforpreventivedrugswerehigheramongolderadultswhodiedwithpancreaticcancer(adjustedmediandifference,523), costs for preventive drugs were higher among older adults who died with pancreatic cancer (adjusted median difference, 13; 95% confidence interval, 55-22) or gynecological cancers (adjusted median difference, 27;9527; 95% confidence interval, 18-$36). There was no decrease noted with regard to the cost of preventive drugs throughout the last year of life. CONCLUSIONS: Preventive drugs commonly are prescribed during the last year of life among older adults with cancer, and often are continued until the final weeks before death. Adequate deprescribing strategies are warranted to reduce the burden of drugs with limited clinical benefit near the end of life

    Laser capture microdissection of gonads from juvenile zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex determination and differentiation.</p> <p>Methods</p> <p>The laser capture microdissection technique enables isolation of specific cells and tissues and thereby removes the noise of gene expression from other cells or tissues in the gene expression profile. A protocol developed for laser microdissection of human gonocytes was adjusted and optimised to isolate juvenile zebrafish gonads.</p> <p>Results</p> <p>The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows staining, identification, isolation and subsequent RNA purification and amplification of gonads from individual juvenile zebrafish thereby enabling gonadal gene expression profiling.</p> <p>Conclusion</p> <p>The study presents a protocol for isolation of individual juvenile zebrafish gonads, which will enable future investigations of gonadal gene expression during the critical period of sex differentiation. Furthermore, the presented staining method is applicable to other species as it is directed towards alkaline phosphatase that is expressed in gonocytes and embryonic stem cells, which is conserved among vertebrate species.</p

    Impact of protein supplementation during endurance training on changes in skeletal muscle transcriptome

    Get PDF
    Background: Protein supplementation improves physiological adaptations to endurance training, but the impact on adaptive changes in the skeletal muscle transcriptome remains elusive. The present analysis was executed to determine the impact of protein supplementation on changes in the skeletal muscle transcriptome following 5- weeks of endurance training. Results: Skeletal muscle tissue samples from the vastus lateralis were taken before and after 5-weeks of endurance training to assess changes in the skeletal muscle transcriptome. One hundred and 63 genes were differentially expressed after 5-weeks of endurance training in both groups (q-value 0.05). Endurance training primarily affected expression levels of genes related to extracellular matrix and these changes tended to be greater in PRO than in CON. Conclusions: Protein supplementation subtly impacts endurance training-induced changes in the skeletal muscle transcriptome. In addition, our transcriptomic analysis revealed that the extracellular matrix may be an important factor for skeletal muscle adaptation in response to endurance training. This trial was registered at clinicaltrials.gov as NCT03462381, March 12, 201

    C-Terminal Substitution of MDM2 Interacting Peptides Modulates Binding Affinity by Distinctive Mechanisms

    Get PDF
    The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19–26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD) and an equivalent phage optimized peptide (12/1) were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design

    Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury – the effects of twelve weeks of knee-specific training

    Get PDF
    BACKGROUND: Training of neuromuscular control has become increasingly important and plays a major role in rehabilitation of subjects with an injury to the anterior cruciate ligament (ACL). Little is known, however, of the influence of this training on knee stiffness during loading. Increased knee stiffness occurs as a loading strategy of ACL-injured subjects and is associated with increased joint contact forces. Increased or altered joint loads contribute to the development of osteoarthritis. The aim of the study was to determine if knee stiffness, defined by changes in knee kinetics and kinematics of gait, step activity and cross-over hop could be reduced through a knee-specific 12-week training programme. METHODS: A 3-dimensional motion analysis system (VICON) and a force plate (AMTI) were used to calculate knee kinetics and kinematics before and after 12 weeks of knee-specific training in 12 males recruited from a cohort with ACL injury 16 years earlier. Twelve uninjured males matched for age, sex, BMI and activity level served as a reference group. Self-reported patient-relevant data were obtained by the KOOS questionnaire. RESULTS: There were no significant changes in knee stiffness during gait and step activity after training. For the cross-over hop, increased peak knee flexion during landing (from 44 to 48 degrees, p = 0.031) and increased internal knee extensor moment (1.28 to 1.55 Nm/kg, p = 0.017) were seen after training, indicating reduced knee stiffness. The KOOS sport and recreation score improved from 70 to 77 (p = 0.005) and was significantly correlated with the changes in knee flexion during landing for the cross-over hop (r = 0.6, p = 0.039). CONCLUSION: Knee-specific training improved lower extremity kinetics and kinematics, indicating reduced knee stiffness during demanding hop activity. Self-reported sport and recreational function correlated positively with the biomechanical changes supporting a clinical importance of the findings. Further studies are needed to confirm these results in women and in other ACL injured populations

    The "smoker's paradox" in patients with acute coronary syndrome: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smokers have been shown to have lower mortality after acute coronary syndrome than non-smokers. This has been attributed to the younger age, lower co-morbidity, more aggressive treatment and lower risk profile of the smoker. Some studies, however, have used multivariate analyses to show a residual survival benefit for smokers; that is, the "smoker's paradox". The aim of this study was, therefore, to perform a systematic review of the literature and evidence surrounding the existence of the "smoker's paradox".</p> <p>Methods</p> <p>Relevant studies published by September 2010 were identified through literature searches using EMBASE (from 1980), MEDLINE (from 1963) and the Cochrane Central Register of Controlled Trials, with a combination of text words and subject headings used. English-language original articles were included if they presented data on hospitalised patients with defined acute coronary syndrome, reported at least in-hospital mortality, had a clear definition of smoking status (including ex-smokers), presented crude and adjusted mortality data with effect estimates, and had a study sample of > 100 smokers and > 100 non-smokers. Two investigators independently reviewed all titles and abstracts in order to identify potentially relevant articles, with any discrepancies resolved by repeated review and discussion.</p> <p>Results</p> <p>A total of 978 citations were identified, with 18 citations from 17 studies included thereafter. Six studies (one observational study, three registries and two randomised controlled trials on thrombolytic treatment) observed a "smoker's paradox". Between the 1980s and 1990s these studies enrolled patients with acute myocardial infarction (AMI) according to criteria similar to the World Health Organisation criteria from 1979. Among the remaining 11 studies not supporting the existence of the paradox, five studies represented patients undergoing contemporary management.</p> <p>Conclusion</p> <p>The "smoker's paradox" was observed in some studies of AMI patients in the pre-thrombolytic and thrombolytic era, whereas no studies of a contemporary population with acute coronary syndrome have found evidence for such a paradox.</p

    Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Get PDF
    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems

    AMPK Regulates Circadian Rhythms in a Tissue- and Isoform-Specific Manner

    Get PDF
    AMP protein kinase (AMPK) plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo.THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD) cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT) activity, which converts nicotinamide (NAM) to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells.This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners
    corecore