267 research outputs found

    Oral Tolerance and Pyruvate Dehydrogenase in Patients with Primary Biliary Cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by the immunological destruction of intralobular bile ducts and serum anti-mitochondrial antibodies (AMA). Based upon previous work of oral tolerance and autoimmunity, we hypothesized that feeding the mitochondrial autoantigens of PBC would alter the clinical course and the level of antimitochondrial antibodies. The bovine pyruvate dehydrogenase complex (PDC) was purified and 5 mg fed in gelatin capsules to 6 patients with early stage PBC for 6 months. Antimitochondrial antibodies and liver biochemistries were measured at every 3 months for 12 months. The clinical trial was completed for all patients except for 1 who showed deterioration of pre-existing skin rash during treatment, which disappeared within 2 weeks after treatment was discontinued. However, after 1 year, neither the titers of AMAs nor liver biochemistries were significantly changed by this treatment. This is the first trial to test the efficacy of oral tolerance induction in PBC. However, the data, which limited in scope, did not demonstrate efficacy and further highlights the difficulties in showing continuing evidence of tolerance induction in autoimmunity

    Characterization of the near-Earth Asteroid 2002NY40

    Full text link
    In August 2002, the near-Earth asteroid 2002 NY40, made its closest approach to the Earth. This provided an opportunity to study a near-Earth asteroid with a variety of instruments. Several of the telescopes at the Maui Space Surveillance System were trained at the asteroid and collected adaptive optics images, photometry and spectroscopy. Analysis of the imagery reveals the asteroid is triangular shaped with significant self-shadowing. The photometry reveals a 20-hour period and the spectroscopy shows that the asteroid is a Q-type

    The properties of discs around planets and brown dwarfs as evidence for disc fragmentation

    Get PDF
    Direct imaging searches have revealed many very low mass objects, including a small number of planetary-mass objects, as wide-orbit companions to young stars. The formation mechanism of these objects remains uncertain. In this paper, we present the predictions of the disc fragmentation model regarding the properties of the discs around such low-mass objects. We find that the discs around objects that have formed by fragmentation in discs hosted by Sun-like stars (referred to as parent discs and parent stars) are more massive than expected from the M disc-M∗relation (which is derived for stars with masses M∗>0.2M). Accordingly, the accretion rates on to these objects are also higher than expected from thė M∗−M∗relation. Moreover, there is no significant correlation between the mass of the brown dwarf or planet with the mass of its disc nor with the accretion rate from the disc on to it. The discs around objects that form by disc fragmentation have larger than expected masses as they accrete gas from the disc of their parent star during the first few kyr after they form. The amount of gas that they accrete and therefore their mass depend on how they move in their parent disc and how they interact with it. Observations of disc masses and accretion rates on to very low mass objectsareconsistentwiththepredictionsofthediscfragmentationmodel.Futureobservations (e.g. by Atacama Large Millimeter/submillimeter Array) of disc masses and accretion rates on to substellar objects that have even lower masses (young planets and young, low-mass brown dwarfs), where the scaling relations predicted by the disc fragmentation model diverge significantly from the corresponding relations established for higher mass stars, will test the predictions of this model

    Acceptability of the 6-PACK falls prevention program: A pre-implementation study in hospitals participating in a cluster randomized controlled trial

    Get PDF
    There is limited evidence to support the effectiveness of falls prevention interventions in the acute hospital setting. The 6-PACK falls prevention program includes a fall-risk tool; 'falls alert' signs; supervision of patients in the bathroom; ensuring patients' walking AIDS are within reach; toileting regimes; low-low beds; and bed/chair alarms. This study explored the acceptability of the 6-PACK program from the perspective of nurses and senior staff prior to its implementation in a randomised controlled trial. A mixed-methods approach was applied involving 24 acute wards from six Australian hospitals. Participants were nurses working on participating wards and senior hospital staff including: Nurse Unit Managers; senior physicians; Directors of Nursing; and senior personnel involved in quality and safety or falls prevention. Information on program acceptability (suitability, practicality and benefits) was obtained by surveys, focus groups and interviews. Survey data were analysed descriptively, and focus group and interview data thematically. The survey response rate was 60%. Twelve focus groups (n = 96 nurses) and 24 interviews with senior staff were conducted. Falls were identified as a priority patient safety issue and nurses as key players in falls prevention. The 6-PACK program was perceived to offer practical benefits compared to current practice. Nurses agreed fall-risk tools, low-low beds and alert signs were useful for preventing falls (>70%). Views were mixed regarding positioning patients' walking aid within reach. Practical issues raised included access to equipment; and risk of staff injury with low-low bed use. Bathroom supervision was seen to be beneficial, however not always practical. Views on the program appropriateness and benefits were consistent across nurses and senior staff. Staff perceived the 6-PACK program as suitable, practical and beneficial, and were open to adopting the program. Some practical concerns were raised highlighting issues to be addressed by the implementation plan

    Quantifying Water-Mediated Protein–Ligand Interactions in a Glutamate Receptor: A DFT Study

    Get PDF
    It is becoming increasingly clear that careful treatment of water molecules in ligand–protein interactions is required in many cases if the correct binding pose is to be identified in molecular docking. Water can form complex bridging networks and can play a critical role in dictating the binding mode of ligands. A particularly striking example of this can be found in the ionotropic glutamate receptors. Despite possessing similar chemical moieties, crystal structures of glutamate and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) in complex with the ligand-binding core of the GluA2 ionotropic glutamate receptor revealed, contrary to all expectation, two distinct modes of binding. The difference appears to be related to the position of water molecules within the binding pocket. However, it is unclear exactly what governs the preference for water molecules to occupy a particular site in any one binding mode. In this work we use density functional theory (DFT) calculations to investigate the interaction energies and polarization effects of the various components of the binding pocket. Our results show (i) the energetics of a key water molecule are more favorable for the site found in the glutamate-bound mode compared to the alternative site observed in the AMPA-bound mode, (ii) polarization effects are important for glutamate but less so for AMPA, (iii) ligand–system interaction energies alone can predict the correct binding mode for glutamate, but for AMPA alternative modes of binding have similar interaction energies, and (iv) the internal energy is a significant factor for AMPA but not for glutamate. We discuss the results within the broader context of rational drug-design

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
    • 

    corecore