4 research outputs found

    Numerical investigation of an innovative furnace concept for industrial coil coating lines

    Get PDF
    This research was funded by the European Community's Framework Programme for Research and Innovation Horizon 2020 under grant agreement no. 768692 (ECCO). Publisher Copyright: © 2023 The Author(s)In this work, the engineering performance of an innovative furnace concept developed for continuous drying and curing of paint-coated metal sheets (coil coating process) is investigated through advanced modeling and numerical simulation techniques. Unlike the traditional and wide-spread coil coating furnaces – which operate according to the so-called convective air-drying technology –, the present furnace concept relies on infrared radiative heating to drive solvent evaporation and curing reactions. Radiative heat is provided by the operation of radiant porous burners which are fed with evaporated solvents. The current furnace concept consists of two main chambers (the radiant burner section and the curing oven section) with different gas compositions (atmospheres) that are separated by a semi-transparent window. The window allows energy transfer and prevents gas mixing between the two sections. To utilize the solvent-loaded atmosphere available in the curing oven section as fuel – and to prevent the development of explosive conditions therein –, a novel inertization concept shielding the curing oven section from the external environment is considered. The current furnace concept aims at improving process intensification and promoting energy efficiency. For the current furnace concept, numerical simulation results support a suitable and competitive performance for drying the applied coatings in comparison with the traditional approach. Simultaneously, a safe operation is predicted, without (i) solvent leakage from the furnace and (ii) oxygen entrainment from the surrounding ambient into the furnace. These conditions are satisfied demonstrating a safe operation and a complete evaporation of solvents from applied liquid film coatings.publishersversionpublishe

    Numerical investigation of an innovative furnace concept for industrial coil coating lines

    Get PDF
    In this work, the engineering performance of an innovative furnace concept developed for continuous drying and curing of paint-coated metal sheets (coil coating process) is investigated through advanced modeling and numerical simulation techniques. Unlike the traditional and wide-spread coil coating furnaces – which operate according to the so-called convective air-drying technology –, the present furnace concept relies on infrared radiative heating to drive solvent evaporation and curing reactions. Radiative heat is provided by the operation of radiant porous burners which are fed with evaporated solvents. The current furnace concept consists of two main chambers (the radiant burner section and the curing oven section) with different gas compositions (atmospheres) that are separated by a semi-transparent window. The window allows energy transfer and prevents gas mixing between the two sections. To utilize the solvent-loaded atmosphere available in the curing oven section as fuel – and to prevent the development of explosive conditions therein –, a novel inertization concept shielding the curing oven section from the external environment is considered. The current furnace concept aims at improving process intensification and promoting energy efficiency. For the current furnace concept, numerical simulation results support a suitable and competitive performance for drying the applied coatings in comparison with the traditional approach. Simultaneously, a safe operation is predicted, without (i) solvent leakage from the furnace and (ii) oxygen entrainment from the surrounding ambient into the furnace. These conditions are satisfied demonstrating a safe operation and a complete evaporation of solvents from applied liquid film coatings

    Prediction of Self-Sustained Oscillations of an Isothermal Impinging Slot Jet

    No full text
    The present results are focused on the self-sustained oscillations of a confined impinging slot jet and their role in the flow structure and modeling requirements. Unsteady laminar, large-eddy simulation (LES), and Reynolds-averaged Navier–Stokes (RANS) predictions of an isothermal confined impinging jet were validated for several nozzle-to-plate ratios (H/B=4–15) and for laminar (Re=340 and 480) and turbulent (Re=104–2.7×104) conditions. The impinging flow structure was found to be highly influenced by the H/B ratio. For high ratios (H/B>5), the studied steady RANS turbulence models could not satisfactorily predict the high diffusion reported experimentally in the jet-impinging influence zone. The failure of these models has been attributed to the modeling issues of turbulence closures. However, for H/B=8, unsteady laminar 3D and LES calculations were verified, and a sinuous oscillation mode was developed, revealing self-sustained oscillations and the display of periodic flapping of the impinging jet in good agreement with the experiments. The predicted flapping oscillation is one of the reasons for the higher diffusion near the impingement wall, which was verified in several time-averaged experimental studies. The presence of jet flapping matters for clarifying the already long discussion on the RANS model’s validation in predicting impinging jets with high H/B ratios, adding justification to the failure of these turbulence models. This unsteady behavior is correctly computed through LES

    Numerical Simulation of Heat Removal from a Window Slab Partition of a Radiative Coil Coating Oven

    No full text
    In this work, fluid flow and heat transfer performance of a radiative coil coating oven is numerically investigated. In the coil coating oven concept under consideration, porous radiant burners provide the required energy to evaporate the volatile species (solvents) from the applied coating and to promote curing reactions. To avoid the mixing between burners flue gas (with a non-negligible oxygen content) and evaporated (combustible) solvents in the oven (which could lead to a catastrophic oven failure), a semi-transparent window in between both atmospheres is applied. To ensure the window thermal stability during the oven operation, window cooling by wall jets is considered. Different turbulence models were compared against available wall jet heat transfer correlations to select the most suitable for three-dimensional (3D) numerical simulations. Convective heat transfer correlations purposefully developed were embedded in a one-dimensional (1D) window energy model for fast performance characterization, analysing the most influencing parameters—window radiative properties, thickness, inlet temperature and velocity of wall jets, and cooling strategy. The 1D window thermal performance is compared with literature and 3D results considering the full coil coating oven, providing satisfactory confidence on the developed strategy. The 1D model is used for an optimisation study to find the minimum energy consumption while ensuring the safety requirements (maximum window temperature and thermal gradient) are met
    corecore