41 research outputs found

    Conserved elements within open reading frames of mammalian Hox genes

    Get PDF
    A recent study in BMC Evolutionary Biology shows that many of the open reading frames in mammalian Hox genes are more conserved than expected on the basis of their protein sequence. The presence of highly conserved DNA elements is thus not confined to the noncoding DNA in neighboring regions but clearly overlaps with coding sequences. These findings support an emerging view that gene regulatory and coding sequences are likely to be more intermingled than once believed

    The origin of digits: expression patterns versus regulatory mechanisms

    Get PDF
    In the emerging discipline of Evo-Devo, the analysis of gene expression patterns can be deceptive without a clear understanding of the underlying regulatory strategies. Here, we use the paradigm of hand and foot evolution to argue that the consideration of the regulatory mechanisms controlling developmental gene expression is essential to resolve comparative conundrums. In this context, we discuss the adaptive relevance of evolving stepwise, distinct developmental regulatory mechanisms to build an arm, i.e., a composite structure with functional coherence

    MiR-10 Represses HoxB1a and HoxB3a in Zebrafish

    Get PDF
    BACKGROUND: The Hox genes are involved in patterning the anterior-posterior axis. In addition to the protein coding Hox genes, the miR-10, miR-196 and miR-615 families of microRNA genes are conserved within the vertebrate Hox clusters. The members of the miR-10 family are located at positions associated with Hox-4 paralogues. No function is yet known for this microRNA family but the genomic positions of its members suggest a role in anterior-posterior patterning. METHODOLOGY/PRINCIPAL FINDINGS: Using sensor constructs, overexpression and morpholino knockdown, we show in Zebrafish that miR-10 targets HoxB1a and HoxB3a and synergizes with HoxB4 in the repression of these target genes. Overexpression of miR-10 also induces specific phenotypes related to the loss of function of these targets. HoxB1a and HoxB3a have a dominant hindbrain expression domain anterior to that of miR-10 but overlap in a weaker expression domain in the spinal cord. In this latter domain, miR-10 knockdown results in upregulation of the target genes. In the case of a HoxB3a splice variant that includes miR-10c within its primary transcript, we show that the microRNA acts in an autoregulatory fashion. CONCLUSIONS/SIGNIFICANCE: We find that miR-10 acts to repress HoxB1a and HoxB3a within the spinal cord and show that this repression works cooperatively with HoxB4. As with the previously described interactions between miR-196 and HoxA7 and Hox-8 paralogues, the target genes are located in close proximity to the microRNA. We present a model in which we postulate a link between the clustering of Hox genes and post-transcriptional gene regulation. We speculate that the high density of transcription units and enhancers within the Hox clusters places constraints on the precision of the transcriptional control that can be achieved within these clusters and requires the involvement of post-transcriptional gene silencing to define functional domains of genes appropriately

    From Lizard to Snake; Behind the Evolution of an Extreme Body Plan

    No full text

    The phantoms of a high-seven : or: why do our thumbs stick out?

    Get PDF
    The earliest tetrapods had hands and feet with up to eight digits but this number was subsequently reduced during evolution. It was assumed that lineages with more than five digits no longer exist but investigations of clawed-frogs now indicate that they posses a rudimentary or atavistic sixth digit in their hindlimb. A recent reevaluation of the stem tetrapod Ichthyostega predicts that its seven digits evolved from two different types of ancestral fin radials, pre-axial and post-axial. In this context we now ask the question, should we consider a pre-axial origin of the thumb as reason for its unique genetic signature?publishe

    Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model

    No full text
    The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan

    Rapid and parallel adaptive evolution of the visual system of Neotropical Midas cichlid fishes

    Get PDF
    Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions during their radiation. Being a primary signal relay for information from the environment to the organism, the visual system is under continuing selective pressure and a prime organ system for accumulating adaptive changes during speciation, particularly in the case of dramatic shifts in photic conditions. Here, we characterize the full visual system of Midas cichlids at organismal and genetic levels, to determine what types of adaptive changes evolved within the short time span of their radiation. We show that Midas cichlids have a diverse visual system with unexpectedly high intra- and interspecific variation in color vision sensitivity and lens transmittance. Midas cichlid populations in the clear crater lakes have convergently evolved visual sensitivities shifted towards shorter wavelengths compared to the ancestral populations from the turbid great lakes. This divergence in sensitivity is driven by changes in chromophore usage, differential opsin expression, opsin coexpression, and to a lesser degree by opsin coding sequence variation. The visual system of Midas cichlids has the evolutionary capacity to rapidly integrate multiple adaptations to changing light environments. Our data may indicate that, in early stages of divergence, changes in opsin regulation could precede changes in opsin coding sequence evolution

    A comparative analysis of the ontogeny of syngnathids (pipefishes and seahorses) reveals how heterochrony contributed to their diversification

    No full text
    Background: Syngnathids are a highly derived and diverse fish clade comprising the pipefishes, pipe-horses, and seahorses. They are characterized by a plethora of iconic traits that increasingly capture the attention of biologists, including geneticists, ecologists, and developmental biologists. The current understanding of the origins of their derived body plan is, however, hampered by incomplete and limited descriptions of the early syngnathid ontogeny. Results: We provide a comprehensive description of the development of Nerophis ophidion, Syngnathus typhle, and Hippocampus erectus from early cleavage stages to release from the male brooding organ and beyond, including juvenile development. We comparatively describe skeletogenesis with a particular focus on dermal bony plates, the snout-like jaw morphology, and appendages. Conclusions: This most comprehensive and detailed account of syngnathid development to date suggests that convergent phenotypes (e.g., reduction and loss of the caudal fins), likely arose by distinct ontogenetic means in pipefishes and seahorses. Comparison of the ontogenetic trajectories of S. typhle and H. erectus provides indications that characteristic features of the seahorse body plan result from developmental truncation. Altogether, this work provides a valuable resource and framework for future research to understand the evolution of the outlandish syngnathid morphology from a developmental perspective
    corecore