8,772 research outputs found
Agility of vortex-based nanocontact spin torque oscillators
We study the agility of current-tunable oscillators based on a magnetic
vortex orbiting around a point contact in spin-valves. Theory predicts
frequency-tuning by currents occurs at constant orbital radius, so an
exceptional agility is anticipated. To test this, we have inserted an
oscillator in a microwave interferometer to apply abrupt current variations
while time resolving its emission. Using frequency shift keying, we show that
the oscillator can switch between two stabilized frequencies differing by 25%
in less than ten periods. With a wide frequency tunability and a good agility,
such oscillators possess desirable figures of merit for modulation-based rf
applications.Comment: 3 pages, 3 figure
Frequency shift keying in vortex-based spin torque oscillators
Vortex-based spin-torque oscillators can be made from extended spin valves
connected to an electrical nanocontact. We study the implementation of
frequency shift keying modulation in these oscillators. Upon a square
modulation of the current in the 10 MHz range, the vortex frequency follows the
current command, with easy identification of the two swapping frequencies in
the spectral measurements. The frequency distribution of the output power can
be accounted for by convolution transformations of the dc current vortex
waveform, and the current modulation. Modeling indicates that the frequency
transitions are phase coherent and last less than 25 ns. Complementing the
multi-octave tunability and first-class agility, the capability of frequency
shift keying modulation is an additional milestone for the implementation of
vortex-based oscillators in RF circuit.Comment: 6 pages, 5 figure
Keldysh study of point-contact tunneling between superconductors
We revisit the problem of point-contact tunnel junctions involving
one-dimensional superconductors and present a simple scheme for computing the
full current-voltage characteristics within the framework of the
non-equilibrium Keldysh Green function formalism. We address the effects of
different pairing symmetries combined with magnetic fields and finite
temperatures at arbitrary bias voltages. We discuss extensively the importance
of these results for present-day experiments. In particular, we propose ways of
measuring the effects found when the two sides of the junction have dissimilar
superconducting gaps and when the symmetry of the superconducting states is not
the one of spin-singlet pairing. This last point is of relevance for the study
of the superconducting state of certain organic materials like the Bechgaard
salts and, to some extent, for ruthenium compounds.Comment: 10 pages, 4 figure
Generation of two-photon EPR and Wstates
In this paper we present a scheme for generation of two-photon EPR and W
states in the cavity QED context. The scheme requires only one three-level
Rydberg atom and two or three cavities. The atom is sent to interact with
cavities previously prepared in vacuum states, via two-photon process. An
appropriate choice of the interaction times one obtains the mentioned state
with maximized fidelities. These specific times and the values of success
probability and fidelity are discussed.Comment: 4 pages, 5 figure
Quantum teleportation via a W state
We investigate two schemes of the quantum teleportation with a state,
which belongs to a different class from a Greenberger-Horne-Zeilinger class. In
the first scheme, the state is shared by three parties one of whom, called
a sender, performs a Bell measurement. It is shown that quantum information of
an unknown state is split between two parties and recovered with a certain
probability. In the second scheme, a sender takes two particles of the
state and performs positive operator valued measurements in two ways. For two
schemes, we calculate the success probability and the average fidelity. We show
that the average fidelity of the second scheme cannot exceed that of the first
one.Comment: 7 pages, 1 figur
Minimizing Induced Drag with Weight Distribution, Lift Distribution, Wingspan, and Wing-Structure Weight
Because the wing-structure weight required to support the critical wing section bending moments is a function of wingspan, net weight, weight distribution, and lift distribution, there exists an optimum wingspan and wing-structure weight are presented for rectangular wings with four different sets of design constraints. These design constraints are fixed lift distribution and net weight combined with 1) fixed maximum stress and wing loading, 2) fixed maximum deflection and wing loading, 3) fixed maximum stress and stall speed and 4) fixed maximum deflection and stall speed. For each of these analytic solutions, the optimum wing-structure weight is found to depend only on the net weight, independent of the arbitrary fixed lift distribution. Analytic solutions for optimum weight and lift distributions are also presented for the same four sets of design constraints. Depending on the design constraints, the optimum lift distribution can differ significantly from the elliptic lift distribution. Solutions for two example wing designs are presented, which demonstrate how the induced drag varies with lift distribution, wingspan, and wing-structure weight in the design space near the optimum solution. Although the analytic solutions presented here are restricted to rectangular wings, these solutions provide excellent test cases for verifying numerical algorithms used for more general multidisciplinary analysis and optimization
Non-Abelian anyonic interferometry with a multi-photon spin lattice simulator
Recently a pair of experiments demonstrated a simulation of Abelian anyons in
a spin network of single photons. The experiments were based on an Abelian
discrete gauge theory spin lattice model of Kitaev. Here we describe how to use
linear optics and single photons to simulate non-Abelian anyons. The scheme
makes use of joint qutrit-qubit encoding of the spins and the resources
required are three pairs of parametric down converted photons and 14 beam
splitters.Comment: 13 pages, 5 figures. Several references added in v
- …