53 research outputs found

    Teologiska perspektiv pÄ rÀttsstaten hos Gustaf Aulén

    Get PDF
    Gustaf Aulén is remembered for Christus Victor, based on a series of lectures in Uppsala in 1930. In 1933, he was elected bishop of StrÀngnÀs, at a time when Nazism gained power in Germany. Aulén became a fervent opponent of oppressive and totalitarian regimes. He developed a contextual theology of resistance based on the Law of Creation given by God and engraved in every human heart. Aulén distanced himself from both liberal theology and Pietism. One could lead to passivity and adaptation, the other to false pretensions and illusionary ideals. In his ambition to address society as a whole, and not only the Christian community, Aulén built his social ethics not on Christology, but on the intentions of the Reformation and a biblical theology of creation. Justice should not be founded on human rationality or natural law (lex naturalis), but on the Law of God as a dynamic, creative force to be applied in all realms of life. He distinguished the Law of the Creator from natural law, which especially in its Protestant forms and under the influence of secularization, according to Aulén, had degenerated into a collection of fixed and static rules, whereas the Law of God was a continuous revelation of God's universal will. As the love of God is the essence of the law of justice, for a Christian to be a Christian and for the church to be the church they must actively care for the world in all its needs. Aulén's understanding of justice reflects his understanding of God as a living, creative, struggling, and victorious presence in the world, and the church as entrusted with the Word of God. In the historical context of totalitarianism, the church's primary duty in relation to society was to serve as a living conscience of the justice emanating from the divine law of the Creator, and to do so in cooperation with all for whom justice was a holy duty. When read contextually, there is a fundamental consistence in Aulén's theology from Christus Victor to Church, Law and Society

    Taxonomy of the order Bunyavirales : second update 2018

    Get PDF
    In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).Non peer reviewe

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)

    Get PDF
    55 PĂĄg.In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through the Laulima Government Solutions, LLC, prime contract with the U.S. National Institute of Allergy and Infec tious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C. U.J.B. was supported by the Division of Intramural Resarch, NIAID. This work was also funded in part by Contract No. HSHQDC15-C-00064 awarded by DHS S and T for the management and operation of The National Biodefense Analysis and Countermeasures Centre, a federally funded research and development centre operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowl edges support from the Mississippi Agricultural and Forestry Experiment Station (MAFES), USDA-ARS project 58-6066-9-033 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch Project, under Accession Number 1021494. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of the Army, the U.S. Department of Defence, the U.S. Department of Health and Human Services, including the Centres for Disease Control and Prevention, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S and T), or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The U.S. departments do not endorse any products or commercial services mentioned in this publication. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.Peer reviewe

    2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Travel Writing and Rivers

    Get PDF

    TrÄdlös tryckmÀtning av roterande verktyg

    No full text
    Inbyggda system förekommer överallt i dagens samhĂ€lle i allt frĂ„n mobiltelefoner tillsatelliter. Teknikens utveckling gĂ„r mot att fler produkter kommunicerar vĂ€rdefulladata till anvĂ€ndaren och i takt med att komponenter minskar i storlek och pris, blirde allt lĂ€ttare att implementera i redan befintliga produkter. MĂ„let med det hĂ€r projektet var att tillföra mervĂ€rde till ett redan befintligtproduktionsverktyg inom trĂ€industrin. Genom att implementera ett inbyggt systemkan verktyget kommunicera en aktuell status till operatören för att förebyggaovĂ€ntade tillbud och optimera produktionsflödet. Resultatet av det hĂ€r projektet tyder pĂ„ att implementationen Ă€r fullt möjlig trots tuffamiljöer, men det Ă„terstĂ„r att utföra fullvĂ€rdiga test och utvĂ€rderingar ute pĂ„ industrin.Embedded systems occurs increasingly in today’s society in everything from mobile phones to satellites. The technology development of today is towards more products communicating valuable data to its user and as components become smaller and cheaper they become easier to implement in existing products. The goal of this project was to add value to an already existing production tool in the wood industry. By including embedded technologies the tool is able to communicate valuable data to its user and thereby prevent accidents and optimize the production. The result of this project indicates that the implementation is possible despite rough environments, but in field testing and evaluation remains

    Heart failure diagnostics based on ventilation/perfusion single photon emission computed tomography pattern and quantitative perfusion gradients.

    No full text
    OBJECTIVE: Left heart failure (LHF) is a common and frequently overlooked condition owing to insufficient diagnostic methods. This can potentially delay onset of treatment. Our clinical experience with ventilation/perfusion single photon emission computed tomography (V/P SPECT) indicates that perfusion shows an antigravitational distribution pattern in LHF. The aim of the study was to test the hypothesis that LHF diagnosis can be made on the basis of V/P SPECT, and to develop and perform a first evaluation of objective parameters for LHF diagnostics in terms of perfusion gradients. METHODS: This retrospective study included 247 consecutive patients with clinical suspicion of pulmonary embolism (PE), who were examined with V/P SPECT. Perfusion gradients were developed and quantified in dorso-ventral and cranio-caudal directions. Quantitative results were compared with visual interpretation of patients with normal and heart failure patterns. Patients with LHF pattern were retrospectively followed up by review of medical records to confirm or discard heart failure diagnosis at the time of V/P SPECT examination. RESULTS: LHF pattern on V/P SPECT was identified in 36 patients (15%), normal ventilation/perfusion pattern was found in 67 patients (27%), and PE in 62 patients (25%). The follow-up confirmed heart failure diagnosis in 32 of the 36 cases with LHF pattern, leading to a positive predictive value of 88% for LHF diagnosis based on V/P SPECT. Dorso-ventral perfusion gradients discriminated normal from LHF patients. CONCLUSION: In patients with suspected PE, LHF is common. Appropriate V/P SPECT pattern recognition, supported by objectively determined dorso-ventral perfusion gradients, allows the diagnosis of LHF. A positive perfusion gradient in the dorso-ventral direction should lead to consideration of heart failure as a possible explanation for the symptoms in these patients
    • 

    corecore