10 research outputs found

    Deceleration and electrostatic trapping of OH radicals

    Get PDF
    A pulsed beam of ground state OH radicals is slowed down using a Stark decelerator and is subsequently loaded into an electrostatic trap. Characterization of the molecular beam production, deceleration and trap loading process is performed via laser induced fluorescence detection inside the quadrupole trap. Depending on details of the trap loading sequence, typically 10510^5 OH (X2Π3/2,J=3/2X^2\Pi_{3/2}, J=3/2) radicals are trapped at a density of around 10710^7 cm−3^{-3} and at temperatures in the 50-500 mK range. The 1/e trap lifetime is around 1.0 second.Comment: 4 pages, 3 figure

    Multimode dynamics in a short-pulse THz free electron laser

    No full text
    The interaction of waveguide modes and consequences on laser operation are studied numerically in a THz free electron laser (FEL) driven by short electron bunches. The considered FEL cavity configuration is represented by a parallel-plate waveguide extending over the complete distance between cylindrical cavity mirrors with energy out-coupling through a rectangular slit in one of the mirrors. We describe the multimode FEL cavity desynchronization dynamics and predict strong enhancement in FEL power at special cavity configurations, when modes are degenerate. Furthermore, we predict that simultaneous excitation of several waveguide modes can occur but do not negatively influence the lasing process
    corecore