20 research outputs found

    Triple-Mode Switched-Inductor-Capacitor DC-DC Buck Converter with Reusable Flying Capacitor and Bang-Bang Zero-Current Detector for Wide Load Current Range

    Get PDF
    Although the capacity of a battery with a small form factor is extremely low, demand for long usage time of Internet of Things (IoT) products is increasing. Owing to this limitation of the battery, power management integrated circuits (PMICs) are used for extending the battery usage time with high efficiency. In particular, since IoT devices are mostly in the sleep mode in the idle state, PMICs should achieve high efficiency for ultralight loads in the sleep mode as well as for heavy loads in the active mode. In this paper, an accurate bang-bang zero-current detector (to prevent a reverse inductor current) and a triple-mode switched inductor-capacitor dc-dc buck converter with a reusable flying capacitor are presented; these techniques can maintain high efficiency over a wide load current range. The proposed buck converter was fabricated in a 0.18-mu m 1P4M CMOS process. A power conversion efficiency exceeding 85% was achieved in the load range of 100 mu A to 300 mA

    Trabecular structural difference between the superior and inferior regions of the vertebral body: a cadaveric and clinical study

    Get PDF
    BackgroundOsteoporotic vertebral compression fractures commonly involve the superior vertebral body; however, their associated causes have not yet been clearly established. This study aimed to determine the trabecular structural differences between the superior and inferior regions of the vertebral body using cadaveric and clinical studies.Materials and methodsFirst, five vertebrae were collected from three human cadavers. The trabecular structures of the superior and inferior regions of each vertebral body were analyzed using micro-computed tomography (micro-CT), finite element analysis (FEA), and biomechanical test. Based on the results of the ex vivo study, we conducted a clinical study. Second, spine CT images were retrospectively collected. Bone volume and Hounsfield unit were analyzed for 192 vertebral bodies. Finally, after sample size calculation based on the pilot study, prospectively, 200 participants underwent dual-energy X-ray absorptiometry (DXA) of the lateral spine. The bone mineral densities (BMDs) of the superior and inferior regions of each lumbar vertebral body were measured. The paired t-test and Wilcoxon signed-rank test were used for the statistical analyses, and p-value < 0.05 was considered significant.ResultsCadaver studies revealed differences between the superior and inferior trabecular bone structures. The bone volume ratio, BMD, and various other trabecular parameters advocated for decreased strength of the superior region. Throughout the biomechanical study, the limitations of the compression force were 3.44 and 4.63 N/m2 for the superior and inferior regions, respectively. In the FEA study, the inferior region had a lower average displacement and higher von Mises stress than the superior region. In the clinical spine CT-based bone volume and BMD study, the bone volume was significantly higher in the inferior region than in the superior region. In the lateral spine DXA, the mean BMD of the superior region of vertebral bodies was significantly lower compared with that of the inferior region.ConclusionThe superior trabecular structure of the lumbar vertebral bodies possesses more biomechanical susceptibility compared with the inferior trabecular structure, confirming its dominant role in causing osteoporotic vertebral fractures. Physicians should also focus on the BMD values of the superior region of the vertebral body using lateral spine DXA to evaluate osteoporosis

    Effect of a Proton Pump Inhibitor on the Duodenum Microbiome of Gastric Ulcer Patients

    No full text
    The gut microbiota are regarded as a functional organ that plays a substantial role in human health and disease. Proton pump inhibitors (PPIs) are widely used in medicine but can induce changes in the overall gut microbiome and cause disease-associated dysbiosis. The microbiome of the duodenum has not been sufficiently studied, and the effects of PPIs on the duodenal microbiome are poorly understood. In this study, we investigated the effect of PPI administration on duodenum microbiota in patients with a gastric ulcer. A total of 12 gastric ulcer patients were included, and PPI (Ilaprazole, Noltec®, 10 mg) was prescribed in all patients for 4 weeks. A total of 17 samples from the second portion of the duodenum were analyzed. Microbiome compositions were assessed by sequencing the V3–V4 region of the 16s rRNA gene (Miseq). Changes in microbiota compositions after 4 weeks of PPI treatment were analyzed. a-Diversity was higher after PPI treatment (p = 0.02, at Chao1 index), and β-diversity was significantly different after treatment (p = 0.007). Welch’s t-test was used to investigate changes in phyla, genus, and species level, and the abundance of Akkermansia muciniphila, belonging to the phylum Verrucomicrobia, and Porphyromonas endodontalis, belonging to the phylum Bacteroidetes, was significantly increased after treatment (p = 0.044 and 0.05). PPI administration appears to induce duodenal microbiome dysbiosis while healing gastric ulcers. Further large-scale studies on the effects of PPIs on the duodenal microbiome are required

    A voting-based ensemble feature network for semiconductor wafer defect classification

    No full text
    Semiconductor wafer defects severely affect product development. In order to reduce the occurrence of defects, it is necessary to identify why they occur, and it can be inferred by analyzing the patterns of defects. Automatic defect classification (ADC) is used to analyze large amounts of samples. ADC can reduce human resource requirements for defect inspection and improve inspection quality. Although several ADC systems have been developed to identify and classify wafer surfaces, the conventional ML-based ADC methods use numerous image recognition features for defect classification and tend to be costly, inefficient, and time-consuming. Here, an ADC technique based on a deep ensemble feature framework (DEFF) is proposed that classifies different kinds of wafer surface damage automatically. DEFF has an ensemble feature network and the final decision network layer. The feature network learns features using multiple pre-trained convolutional neural network (CNN) models representing wafer defects and the ensemble features are computed by concatenating these features. The decision network layer decides the classification labels using the ensemble features. The classification performance is further enhanced by using a voting-based ensemble learning strategy in combination with the deep ensemble features. We show the efficacy of the proposed strategy using the real-world data from SK Hynix. © 2022, The Author(s).11Ysciescopu

    Efficacy and Safety of Fecal Microbiota Transplantation for Clearance of Multidrug-Resistant Organisms under Multiple Comorbidities: A Prospective Comparative Trial

    No full text
    Fecal microbiota transplantation (FMT) could decolonize multidrug-resistant organisms. We investigated FMT effectiveness and safety in the eradication of carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant enterococci (VRE) intestinal colonization. A prospective non-randomized comparative study was performed with 48 patients. FMT material (60 g) was obtained from a healthy donor, frozen, and administered via endoscopy. The primary endpoint was 1-month decolonization, and secondary endpoints were 3-month decolonization and adverse events. Microbiota analysis of fecal samples was performed using 16S rRNA sequencing. Intention-to-treat analysis revealed overall negative conversion between the FMT and control groups at 1 (26% vs. 10%, p = 0.264) and 3 (52% vs. 24%, p = 0.049) months. The 1-month and 3-month CRE clearance did not differ significantly by group (36% vs. 10%, p = 0.341; and 71% vs. 30%, p = 0.095, respectively). Among patients with VRE, FMT was ineffective for 1-month or 3-month negative conversion (13% vs. 9%, p > 0.999; and 36% vs. 18%, p = 0.658, respectively) However, cumulative overall negative-conversion rate was significantly higher in the FMT group (p = 0.037). Enterococcus abundance in patients with VRE significantly decreased following FMT. FMT may be effective at decolonizing multidrug-resistant organisms in the intestinal tract

    The impact of prophylactic ureteral stenting during kidney transplantation on postoperative surgical outcomes

    No full text
    Background : The aim of this study was to evaluate the safety and feasibility of prophylactic ureteric stenting during kidney transplantation (KT). Methods : The authors retrospectively reviewed patients who underwent KT between June 2016 and June 2019. The prophylactic ureteral stenting group (double-J [DJ]) and no-stent group (no-DJ) were compared with respect to the clinical data and surgical outcomes. Results : A total of 42 patients underwent KT; 17 patients were classified into the DJ group and 25 patients into the no-DJ group. Antithymocyte globulin induction and donor- specific antibody positivity were significantly higher in the DJ group. There were no significant differences between the groups in terms of symptomatic urinary tract infection (UTI). The time to postoperative UTI was significantly shorter in the DJ group than in the no-DJ group (33.5±7.8 vs. 105.3±71.6 days, P=0.013). The development of postoperative BK viremia was significantly higher in the no-DJ group (0.0% vs. 16.0%, P=0.035). Urologic complications were significantly higher in the no-DJ group (0.0% vs. 16.0%, P=0.035). In the no-DJ group, urologic complications occurred in four patients: ureteroneocystostomy stenosis in three patients and ureteroneocystostomy leakage in one patient. Percutaneous ureteral interventions were performed for all patients using percutaneous nephrostomy and reno-uretero-vesical stenting. However, there were no postoperative urologic complications in the DJ group. Conclusions: Prophylactic ureteric stenting during KT may be safe and feasible without significantly increasing the incidence of UTI and BK viremia. Additionally, prophylactic ureteric stenting may reduce urologic complications after KT

    PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester

    No full text
    An efficient thin film acoustic energy harvester was explored using flexible poly­(3,4-ethylene dioxythiophene) (PEDOT) films as electrodes in an all-organic triboelectric generator (AO-TEG). A thin film AO-TEG structured as PEDOT/Kapton//PET/PEDOT was prepared by the solution casting polymerization­(SCP) on the dielectric polymer films. As-prepared AO-TEG showed high flexibility and durability due to the strong adhesion between the electrodes and the dielectric polymer. The short-circuit current density (<i>J</i><sub>sc</sub>), open-circuit voltage (<i>V</i><sub>oc</sub>), and maximum power density (Pw) reached 50 mA/m<sup>2</sup>, 700 V, and 12.9 W/m<sup>2</sup> respectively. The output current density decreased with the increase in the electrode resistance (<i>R</i><sub>e</sub>), but the energy loss in the organic electrodes was negligible. The AO-TEG could light up 180 LEDs instantaneously upon touching of the AO-TEG with a palm (∼120 N). With the flexible structure, the AO-TEG was worn as clothes and generated electricity to light LEDs upon regular human movement. Furthermore, the AO-TEG was applicable as a thin film acoustic energy harvester, which used music to generate electricity enough for powering of 5 LEDs. An AO-TEG with a PEDOT electrode (<i>R</i><sub>e</sub> = 200 Ω) showed instantaneous peak-to-peak voltage generation of 11 V under a sound pressure level (SPL) of 90–100 dB. The harvested acoustic energy through the AO-TEG was 350 μJ from the 4 min playing of the same single song. This is the first demonstration of a flexible triboelectric generator (TEG) using an organic electrode for harvesting acoustic energy from ambient environment

    PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester

    No full text
    An efficient thin film acoustic energy harvester was explored using flexible poly­(3,4-ethylene dioxythiophene) (PEDOT) films as electrodes in an all-organic triboelectric generator (AO-TEG). A thin film AO-TEG structured as PEDOT/Kapton//PET/PEDOT was prepared by the solution casting polymerization­(SCP) on the dielectric polymer films. As-prepared AO-TEG showed high flexibility and durability due to the strong adhesion between the electrodes and the dielectric polymer. The short-circuit current density (<i>J</i><sub>sc</sub>), open-circuit voltage (<i>V</i><sub>oc</sub>), and maximum power density (Pw) reached 50 mA/m<sup>2</sup>, 700 V, and 12.9 W/m<sup>2</sup> respectively. The output current density decreased with the increase in the electrode resistance (<i>R</i><sub>e</sub>), but the energy loss in the organic electrodes was negligible. The AO-TEG could light up 180 LEDs instantaneously upon touching of the AO-TEG with a palm (∼120 N). With the flexible structure, the AO-TEG was worn as clothes and generated electricity to light LEDs upon regular human movement. Furthermore, the AO-TEG was applicable as a thin film acoustic energy harvester, which used music to generate electricity enough for powering of 5 LEDs. An AO-TEG with a PEDOT electrode (<i>R</i><sub>e</sub> = 200 Ω) showed instantaneous peak-to-peak voltage generation of 11 V under a sound pressure level (SPL) of 90–100 dB. The harvested acoustic energy through the AO-TEG was 350 μJ from the 4 min playing of the same single song. This is the first demonstration of a flexible triboelectric generator (TEG) using an organic electrode for harvesting acoustic energy from ambient environment
    corecore