1,936 research outputs found

    Clinical characteristics and treatment modalities of vulvovaginal atrophy in genitourinary syndrome of menopause

    Get PDF
    Background: Genitourinary syndrome of menopause (GSM) causes symptoms such as vaginal dryness, dysuria, repetitive urinary tract infection and urinary urgency may affect daily activities, sexual relationships, and overall quality of life. The aim of the study was to provide the clinical characteristics of VVA patients in South Korea and the effectiveness as well as complications of the currently used low dose estrogen vaginal suppository.Methods: 52 women who has visited the outpatient gynecology clinic of the National Health Insurance Service Ilsan Hospital from January 2018 to December 2019 were recruited as study subjects. For the analysis of the clinical characteristics, subjective symptoms described by the patient’s own words such as vaginal dryness, pain, dysuria, dyspareunia, or no symptoms at all were included. Objective signs such as thinning of vaginal rugae, mucosal dryness, and mucosal fragility and the presence of petechiae were recorded.Results: Vaginal dryness was the most common complaint (92.3%). Thinning of the vaginal rugae was the most commonly noted objective sign (73.1%). Of the 52 subjects, 31 (59.6%) refrained from using the low dose estrogen vaginal suppository. The most common reason for not being able to use the suppository was the inability to insert the suppository (32.3%).Conclusions: Although patient-reported symptoms and clinical objectivity through physical examination are two components in diagnosing VVA, further study is warranted for a more objective and discriminatory diagnosis criteria for VVA. As the only available treatment modality was low dose vaginal estrogen suppository, comparison with other treatment modalities were not available

    Proteome-Level Responses of Escherichia coli to Long-Chain Fatty Acids and Use of Fatty Acid Inducible Promoter in Protein Production

    Get PDF
    In Escherichia coli, a long-chain acyl-CoA is a regulatory signal that modulates gene expression through its binding to a transcription factor FadR. In this study, comparative proteomic analysis of E. coli in the presence of glucose and oleic acid was performed to understand cell physiology in response to oleic acid. Among total of 52 proteins showing altered expression levels with oleic acid presence, 9 proteins including AldA, Cdd, FadA, FadB, FadL, MalE, RbsB, Udp, and YccU were newly synthesized. Among the genes that were induced by oleic acid, the promoter of the aldA gene was used for the production of a green fluorescent protein (GFP). Analysis of fluorescence intensities and confocal microscopic images revealed that soluble GFP was highly expressed under the control of the aldA promoter. These results suggest that proteomics is playing an important role not only in biological research but also in various biotechnological applications

    Development and Performance Assessment of the High-Performance Shrinkage Reducing Agent for Concrete

    Get PDF
    To develop a high-performance shrinkage reducing agent, this study investigated several shrinkage reducing materials and supplements for those materials. Fluidity and air content were satisfactory for the various shrinkage reducing materials. The decrease in viscosity was the lowest for glycol-based materials. The decrease in drying shrinkage was most prominent for mixtures containing glycol-based materials. In particular, mixtures containing G2 achieved a 40% decrease in the amount of drying shrinkage. Most shrinkage reducing materials had weaker level of compressive strength than that of the plain mixture. When 3% triethanolamine was used for early strength improvement, the strength was enhanced by 158% compared to that of the plain mixture on day 1; enhancement values were 135% on day 7 and 113% on day 28. To assess the performance of the developed high-performance shrinkage reducing agent and to determine the optimal amount, 2.0% shrinkage reducing agent was set as 40% of the value of the plain mixture. While the effect was more prominent at higher amounts, to prevent deterioration of the compressive strength and the other physical properties, the recommended amount is less than 2.0%

    Role of S5b/PSMD5 in Proteasome Inhibition Caused by TNF-α/NFκB in Higher Eukaryotes

    Get PDF
    SummaryThe ubiquitin-proteasome system is essential for maintaining protein homeostasis. However, proteasome dysregulation in chronic diseases is poorly understood. Through genome-wide cell-based screening using 5,500 cDNAs, a signaling pathway leading to NFκB activation was selected as an inhibitor of 26S proteasome. TNF-α increased S5b (HGNC symbol PSMD5; hereafter S5b/PSMD5) expression via NFκB, and the surplus S5b/PSMD5 directly inhibited 26S proteasome assembly and activity. Downregulation of S5b/PSMD5 abolished TNF-α-induced proteasome inhibition. TNF-α enhanced the interaction of S5b/PSMD5 with S7/PSMC2 in nonproteasome complexes, and interference of this interaction rescued TNF-α-induced proteasome inhibition. Transgenic mice expressing S5b/PSMD5 exhibited a reduced life span and premature onset of aging-related phenotypes, including reduced proteasome activity in their tissues. Conversely, S5b/PSMD5 deficiency in Drosophila melanogaster ameliorated the tau rough eye phenotype, enhanced proteasome activity, and extended the life span of tau flies. These results reveal the critical role of S5b/PSMD5 in negative regulation of proteasome by TNF-α/NFκB and provide insights into proteasome inhibition in human disease

    Large clusters and hollow microfibers by multicomponent self-assembly of citrate stabilized gold nanoparticles with temperature-responsive amphiphilic dendrimers

    Get PDF
    Gold clusters with controlled sizes have been prepared by controlled self-assembly of citrate stabilized gold nanoparticles (AuNPs) with temperature-responsive luminescent amphiphilic dendrimers (Den 40) of oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains. The shape and size of the resultant gold clusters depend strongly on the molar ratio of Den 40 to AuNPs. These gold clusters can further assemble into hollow microfibers decorated with AuNPs, which can be used as a promising substrate for surface enhanced Raman spectroscopy (SERS). The formation of spherical gold clusters and hollow microfibers simply by self-assembly of AuNPs and luminescent amphiphilic dendrimers (Den 40) could not only provide some useful insights for producing multifunctional materials via multicomponent self-assembly but also offer promise for potential applications of the self-assemblies in many systems, such as SERS and stimuli-responsive sensors.close2

    Polymorphism of a COLIA1 Gene Sp1 Binding Site in Korean Women with Pelvic Organ Prolapse

    Get PDF
    PURPOSE: To evaluate the possible influence of G-->T substitution at the Sp1-binding site of the COLIA1 gene on the risk of pelvic organ prolapse (POP). MATERIALS AND METHODS: The study group consisted of 15 women with advanced stage POP. Fifteen control subjects with uterine myomas among the postmenopausal women were matched for age and parity. DNA was obtained from peripheral blood leukocytes. The fragments of the first intron of the COLIA1 gene were amplified by real time polymerase chain reaction. The polymorphism was identified using LightCycler Technology with hybridization probes. Sequencing reactions were performed on each template using commercial primer. RESULTS: Two groups had no significant difference in medical history, surgical, and smoking history. The homozygous peaks in two groups were noted at 57 on melting curve analysis. Sequencing reactions confirmed the G/G alleles in the 30 specimens tested. We could not find any polymorphism at the Sp1-binding site in COLIA1 gene with advanced stage POP. Statistical significance was considered to be p < .05. CONCLUSION: The polymorphism of the Sp1-binding site in the COLIA1 gene did not contribute to the development of POP in Korea.ope

    Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with −O− groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (−OH), carboxylic (−COOH), and amine (−NH2) groups – by coating their surfaces with tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS), TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity, and DNA stability in L-929 fibroblasts were determined by water-soluble tetrazolium, 2′,7′-dichlorodihydrofluorescein, lactate dehydrogenase, and comet assays, respectively. Our toxicological observations suggest that the functional groups and sizes of SPIONs are critical determinants of cellular responses, degrees of cytotoxicity and genotoxicity, and potential mechanisms of toxicity. Nanoparticles with various surface modifications and of different sizes induced slight, but possibly meaningful, changes in cell cytotoxicity and genotoxicity, which would be significantly valuable in further studies of bioconjugation and cell interaction for drug delivery, cell culture, and cancer-targeting applications
    corecore