21 research outputs found

    Hepatoprotective Activity of Licorice Water Extract against Cadmium-induced Toxicity in Rats

    Get PDF
    Licorice is commonly used as a cure for digestive disorders and as a detoxification agent in East Asia. This study investigated the protective effect of licorice water extract against cadmium (CdCl2, Cd)-induced liver toxicity in rats. To induce acute toxicity, Cd (4 mg/kg body weight) was dissolved in normal saline and intravenously (i.v.) injected into rats. The rats then received either a vehicle or licorice water extract (50, 100 mg/kg/day) for 3 days, and were subsequently exposed to a single injection of Cd 24 h after the last licorice/vehicle treatment. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were significantly increased by Cd treatment. In contrast, pretreatment with licorice reduced ALT, AST and LDH. In histopathological analysis, licorice decreased the central necrosis around central veins, the peripheral hemorrhage around portal triads, the percentage of degenerative hepatic regions (%/mm2 hepatic parenchyma) and the number of degenerative hepatic cells (N/100 hepatic cells). Licorice also inhibited the increment of Bad (a BH3 domain-containing protein) translocation by Cd in liver cells. These results demonstrate that licorice could have a hepatoprotective effect by inhibiting the translocation of Bad to the mitochondria in Cd-intoxificated rats

    Anti-inflammatory effect of ethanolic extract from <it>Myagropsis myagroides</it> on murine macrophages and mouse ear edema

    No full text
    Abstract Background This study aims to investigate anti-inflammatory effect of ethanolic extract of Myagropsis myagroides (EMM) in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and the phorbol 12-myristate 13-acetate (PMA)-induced ear edema in mice, and to clarify its underlying molecular mechanisms. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blotting. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunocytochemistry and reporter gene assay, respectively. PMA-induced mouse ear edema was used as the animal model of inflammation. Anti-inflammatory compounds in EMM were isolated using high-performance liquid chromatography and identified by nuclear magnetic resonance. Results EMM significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a dose-dependent manner and suppressed the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. EMM strongly suppressed nuclear translocation of NF-κB by preventing degradation of inhibitor of κB-α as well as by inhibiting phosphorylation of Akt and MAPKs. EMM reduced ear edema in PMA-induced mice. One of the anti-inflammatory compounds in EMM was identified as 6,6’-bieckol. Conclusions These results suggest that the anti-inflammatory properties of EMM are associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines through the inhibition of NF-κB pathway in LPS-stimulated macrophages.</p

    RF Environment Test on a Proposed Site for the Sensor Station of the Next Generation Satellite Navigation System, GALILEO: I. The Result of the Test on the Vicinity of KVN Tamla Site in the Year of 2006 by KASI

    No full text
    As the next generation of global satellite navigation system, the Galileo project is about to witness an initial orbit validation stage as the successful test of navigation message transmission from Giove-A in 2007. The Space Geodesy division and the Radio Astronomy division of the Korea Astronomy & Space Science Institute had collaborated on the field survey for the Galileo Sensor Station (GSS) RF environment of the proposed site near Jeju Tamla University from August 3rd to August 5th, 2006. The power spectrums were measured in full-band (800 ˜ 2000 MHz) and in-band (E5, E6 and L1 band) in frequency domain for 24 hours respectively. Finally, we performed a time domain analysis to characterize strong in-band interference source based on the result of the previous step

    Optimization of 2-Aminoquinazolin-4-(3<i>H</i>)-one Derivatives as Potent Inhibitors of SARS-CoV-2: Improved Synthesis and Pharmacokinetic Properties

    No full text
    We previously reported the potent antiviral effect of the 2-aminoquinazolin-4-(3H)-one 1, which shows significant activity (IC50 = 0.23 μM) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with no cytotoxicity. However, it is necessary to improve the in vivo pharmacokinetics of compound 1 because its area under the curve (AUC) and maximum plasma concentration are low. Here, we designed and synthesized N-substituted quinazolinone derivatives that had good pharmacokinetics and that retained their inhibitory activity against SARS-CoV-2. These compounds were conveniently prepared on a large scale through a one-pot reaction using Dimroth rearrangement as a key step. The synthesized compounds showed potent inhibitory activity, low binding to hERG channels, and good microsomal stability. In vivo pharmacokinetic studies showed that compound 2b had the highest exposure (AUC24h = 41.57 μg∙h/mL) of the synthesized compounds. An in vivo single-dose toxicity evaluation of compound 2b at 250 and 500 mg/kg in rats resulted in no deaths and an approximate lethal dose greater than 500 mg/kg. This study shows that N-acetyl 2-aminoquinazolin-4-(3H)-one 2b is a promising lead compound for developing anti-SARS-CoV-2 agents
    corecore