104,053 research outputs found
Planck pre-launch status: High Frequency Instrument polarization calibration
The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (ΔP/T_(cmb) ~ 4 × 10^(-6) for P either Q or U and T_(cmb) ≃ 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to l ~ 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1° respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements
Nature of fault planes in solid neutron star matter
The properties of tectonic earthquake sources are compared with those deduced
here for fault planes in solid neutron-star matter. The conclusion that
neutron-star matter cannot exhibit brittle fracture at any temperature or
magnetic field is significant for current theories of pulsar glitches, and of
the anomalous X-ray pulsars and soft-gamma repeaters.Comment: 5 AAS LaTeX pages 1 eps figur
Single stage experimental evaluation of variable geometry guide vanes and stator blading. Part 5 - Overall performance for variable camber guide vane and stator B with radial and circumferential inlet flow distortion
Inlet flow distortion effects on single stage variable geometry guide vanes and stator
Modulation of endoglin expression in islets of langerhans by VEGF reveals a novel regulator of islet endothelial cell function
BACKGROUND: Endoglin/CD105 is an auxiliary receptor for transforming growth factor-β with established roles in vascular remodelling. It has recently been shown that heterozygous endoglin deficiency in mice decreases insulin secretion in an animal model of obesity, highlighting a potential role for endoglin in the regulation of islet function. We have previously identified two different populations of endoglin expressing cells in human and mouse islets which are: (i) endothelial cells (ECs) and (ii) islet mesenchymal stromal cells. The contribution of islet EC endoglin expression to islet development and sensitivity to VEGF is unknown and is the focus of this study. RESULTS: In vitro culture of mouse islets with VEGF164 for 48 h increased endoglin mRNA levels above untreated controls but VEGF did not modulate VEGFR2, CD31 or CD34 mRNA expression or islet viability. Removal of EC-endoglin expression in vivo reduced islet EC area but had no apparent effect on islet size or architecture. CONCLUSION: EC-specific endoglin expression in islets is sensitive to VEGF and plays partial roles in driving islet vascular development, however such regulation appears to be distinct to mechanisms required to modulate islet viability and size
The Desktop Muon Detector: A simple, physics-motivated machine- and electronics-shop project for university students
This paper describes an undergraduate-level physics project that incorporates
various aspects of machine- and electronics-shop technical development. The
desktop muon detector is a self-contained apparatus that employs plastic
scintillator as a detection medium and a silicon photomultiplier for light
collection. These detectors can be used in conjunction with the provided
software to make interesting physics measurements. The total cost of each
counter is approximately $100.Comment: 29 pages, 14 figure
The short-time self-diffusion coefficient of a sphere in a suspension of rigid rods
The short--time self diffusion coefficient of a sphere in a suspension of
rigid rods is calculated in first order in the rod volume fraction. For low rod
concentrations the correction to the Einstein diffusion constant of the sphere
is a linear function of the rod volume fraction with the slope proportional to
the equilibrium averaged mobility diminution trace of the sphere interacting
with a single freely translating and rotating rod. The two--body hydrodynamic
interactions are calculated using the so--called bead model in which the rod is
replaced by a stiff linear chain of touching spheres. The interactions between
spheres are calculated numerically using the multipole method. Also an
analytical expression for the diffusion coefficient as a function of the rod
aspect ratio is derived in the limit of very long rods. We show that in this
limit the correction to the Einstein diffusion constant does not depend on the
size of the tracer sphere. The higher order corrections depending on the
applied model are computed numerically. An approximate expression is provided,
valid for a wide range of aspect ratios.Comment: 11 pages, 6 figure
Health effects of home energy efficiency interventions in England: a modelling study
Objective: To assess potential public health impacts of changes to indoor air quality and temperature due to energy efficiency retrofits in English dwellings to meet 2030 carbon reduction targets. Design: Health impact modelling study. Setting: England. Participants: English household population. Intervention: Three retrofit scenarios were modelled: (1) fabric and ventilation retrofits installed assuming building regulations are met. (2) As with scenario (1) but with additional ventilation for homes at risk of poor ventilation. (3) As with scenario (1) but with no additional ventilation to illustrate the potential risk of weak regulations and non-compliance. Main Outcome: Primary outcomes were changes in quality adjusted life years (QALYs) over 50 years from cardiorespiratory diseases, lung cancer, asthma and common mental disorders due to changes in indoor air pollutants, including: second-hand tobacco smoke, PM2.5 from indoor and outdoor sources, radon, mould, and indoor winter temperatures. Results: The modelling study estimates showed that scenario (1) resulted in positive effects on net mortality and morbidity of 2,241 (95% credible intervals (CI) 2,085 to 2,397) QALYs per 10,000 persons over 50 years due to improved temperatures and reduced exposure to indoor pollutants, despite an increase in exposure to outdoor–generated PM2.5. Scenario (2) resulted in a negative impact of -728 (95% CI -864 to -592) QALYs per 10,000 persons over 50 years due to an overall increase in indoor pollutant exposures. Scenario (3) resulted in -539 (95% CI -678 to -399) QALYs per 10,000 persons over 50 years due to an increase in indoor exposures despite targeting. Conclusions: If properly implemented alongside ventilation, energy efficiency retrofits in housing can improve health by reducing exposure to cold and air pollutants. Maximising the health benefits requires careful understanding of the balance of changes in pollutant exposures, highlighting the importance of ventilation to mitigate the risk of poor indoor air quality
On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts
In the context of two particularly interesting non-Hermitian models in
quantum mechanics we explore the relationship between the original Hamiltonian
H and its Hermitian counterpart h, obtained from H by a similarity
transformation, as pointed out by Mostafazadeh. In the first model, due to
Swanson, h turns out to be just a scaled harmonic oscillator, which explains
the form of its spectrum. However, the transformation is not unique, which also
means that the observables of the original theory are not uniquely determined
by H alone. The second model we consider is the original PT-invariant
Hamiltonian, with potential V=igx^3. In this case the corresponding h, which we
are only able to construct in perturbation theory, corresponds to a complicated
velocity-dependent potential. We again explore the relationship between the
canonical variables x and p and the observables X and P.Comment: 9 pages, no figure
- …