117,765 research outputs found
Development of pigments for thermal control coatings Final report, 17 Jun. - 16 Dec. 1965
Powdered metal oxide pigments by nucleation for temperature control coating
Sixty-GHz integrated RF head Final report
Integrated 60.8 GHz RF receiver and low noise IF preamplifier developmen
A Multiscale Guide to Brownian Motion
We revise the Levy's construction of Brownian motion as a simple though still
rigorous approach to operate with various Gaussian processes. A Brownian path
is explicitly constructed as a linear combination of wavelet-based "geometrical
features" at multiple length scales with random weights. Such a wavelet
representation gives a closed formula mapping of the unit interval onto the
functional space of Brownian paths. This formula elucidates many classical
results about Brownian motion (e.g., non-differentiability of its path),
providing intuitive feeling for non-mathematicians. The illustrative character
of the wavelet representation, along with the simple structure of the
underlying probability space, is different from the usual presentation of most
classical textbooks. Similar concepts are discussed for fractional Brownian
motion, Ornstein-Uhlenbeck process, Gaussian free field, and fractional
Gaussian fields. Wavelet representations and dyadic decompositions form the
basis of many highly efficient numerical methods to simulate Gaussian processes
and fields, including Brownian motion and other diffusive processes in
confining domains
Analysis of wear-debris from full-scale bearing fatigue tests using the ferrograph
The ferrograph was used to determine the types and quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49 mm absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments
Measuring forces between protein fibers by microscopy
We propose a general scheme for measuring the attraction between mechanically frustrated semiflexible fibers by measuring their thermal fluctuations and shape. We apply this analysis to a system of sickle hemoglobin (HbS) fibers that laterally attract one another. These fibers appear to “zip” together before reaching mechanical equilibrium due to the existence of cross-links into a dilute fiber network. We are also able to estimate the rigidities of the fibers. These rigidities are found to be consistent with sickle hemoglobin “single” fibers 20 nm in diameter, despite recent experiments indicating that fiber bundling sometimes occurs. Our estimate of the magnitude of the interfiber attraction for HbS fibers is in the range 8 ± 7 kBT/μm, or 4 ± 3 kBT/μm if the fibers are assumed, a priori to be single fibers (such an assumption is fully consistent with the data). This value is sufficient to bind the fibers, overcoming entropic effects, although extremely chemically weak. Our results are compared to models for the interfiber attraction that include depletion and van der Waals forces. This technique should also facilitate a similar analysis of other filamentous protein assembles in the future, including β-amyloid, actin, and tubulin
Axisymmetric buckling of a spherical shell embedded in an elastic medium under uniaxial stress at infinity
The problem of a thin spherical linearly-elastic shell, perfectly bonded to an infinite linearly-elastic medium is considered. A constant axisymmetric stress field is applied at infinity in the matrix, and the displacement and stress fields in the shell and matrix are evaluated by means of harmonic potential functions. In order to examine the stability of this solution, the buckling problem of a shell which experiences this deformation is considered. Using Koiter's nonlinear shallow shell theory, restricting buckling patterns to those which are axisymmetric, and using the Rayleigh–Ritz method by expanding the buckling patterns in an infinite series of Legendre functions, an eigenvalue problem for the coefficients in the infinite series is determined. This system is truncated and solved numerically in order to analyse the behaviour of the shell as it undergoes buckling, and to identify the critical buckling stress in two cases — namely where the shell is hollow and the stress at infinity is either uniaxial or radial
Marshall information retrieval and display system (MIRADS)
Program for data management system allows sophisticated inquiries while utilizing simplified language. Online system is composed of several programs. System is written primarily in COBOL with routines in ASSEMBLER and FORTRAN V
Ferrographic analysis of wear particles from sliding elastohydrodynamic experiments
The Ferrograph was used to analyze wear debris generated in a sliding elastohydrodynamic contact. The amount of wear debris correlates well with the ratio of film thickness to composite surface roughness (A ratio). The general wear level parameter and the wear severity index yielded similar correlations with average A ratios. Essentially all the generated wear particles were of the normal rubbing wear type. The Ferrograph was more sensitive in detecting the wear debris than was the commonly used emission spectrograph
Coal-rock interface detector
A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid
Use of thin ionization calorimeters for measurements of cosmic ray energy spectra
The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat
- …