1,151 research outputs found
Isolation and characterization of microsatellites in the lichen Buellia frigida (Physciaceae), an Antarctic endemic
Premise of the study: Microsatellite markers were characterized for an Antarctic endemic, Buellia frigida, to investigate population structure and origin of Antarctic lichens.
Methods and Results: Five primer sets were characterized. All loci were polymorphic with eight to 16 alleles per locus in a sample of 59 lichens.
Conclusions: The microsatellite markers potentially provide insight into population structure and gene flow of B. frigida
Expression of tumor necrosis factor [alpha] converting enzyme in endocrine cancers
Tumor necrosis factor [alpha] converting enzyme (TACE) mediates shedding of human epidermal growth factor receptor-4 (HER4). Recent data suggest that released HER4 intracellular domain (4ICD) induces apoptosis in breast cancer.
TACE expression, as measured by immunohistochemical analysis, was observed in 183 of 383 breast carcinomas, 39 of 217 ovarian carcinomas, and 16 of 24 and 17 of 24 hormone-sensitive and hormone-insensitive prostate carcinomas, respectively. HER4 expression was detected in breast carcinomas by using 2 antibodies recognizing an extracellular or intracellular epitope. TACE expression was predominantly seen in tumors with high levels of 4ICD and membranous HER4. Apoptotic activity was measured by the terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 staining in breast carcinomas. There was no significant association between cleaved caspase-3 or TUNEL positivity and 4ICD, whereas TUNEL positivity was seen predominantly in tumors with high levels of internalized HER4. The data presented herein show TACE expression in endocrine cancers and further support a role for TACE in breast cancer apoptosis
Small changes in water levels and groundwater nutrients alter nitrogen and carbon processing in dune slack soils
Dune slacks are biodiverse seasonal wetlands which experience considerable fluctuation in water table depth. They are under threat from lowered water tables due to climate change and water abstraction and from eutrophication. The biological effects caused by the interactions of these pressures are poorly understood, particularly on soil processes. We used a mesocosm experiment and laboratory assays to study the impact of lowered water tables, groundwater nitrogen contamination, and their synergistic effects on soil microbial processes and greenhouse gas emissions. This study showed that just a 10 cm decrease in water table depth led to a reduction in denitrification and to a corresponding increase in soil nitrogen content. Meanwhile N2O emissions occurred for longer durations within dune slack soils subject to higher concentrations of groundwater nitrogen contamination. The results from extracellular enzyme assays suggest that decomposition rates increase within drier soils shown by the increase in β-glucosidase activity, with further sensitivity to groundwater nitrogen contamination shown by the increase in phenol oxidase activity. Dune slack soils with a 10 cm lower water table had significantly lower methane emissions, nearly 5 times lower in the drier soils. Our findings demonstrate that dune slacks are sensitive to both small changes in groundwater levels and to groundwater nitrogen contamination. The biological impacts from lowered water tables are likely to be intensified where there is also groundwater nitrogen contamination
The impact of firm technology on carbon disclosure: the critical role of stakeholder pressure
The demand for transparency about the microeconomic sources of environmental pollution has surged recently, causing carbon disclosure to rise to the top of the global climate change discourse. In this study, we empirically investigate how the environmental performance of firm production technologies shapes their voluntary carbon disclosure behaviour and how key stakeholders influence the performance-disclosure relationship. Using a panel of 1,547 firms across 24 countries covering 2006–20, we find that firms with the most efficient technologies for reducing emissions tend to disclose their carbon impact, especially when they face more stringent environmental regulations. These high-performing firms demonstrate a tendency for non-disclosure when faced with intense shareholder and environmental activist pushback against pollution. Our findings also highlight the existence of a profitability penalty for transparent high-efficiency firms relative to comparable firms that adopt strategic silence
Fundamental performance similarities between individual pitch control strategies for wind turbines.
The use of blade individual pitch control (IPC) offers a means of reducing the harmful turbine structural loads that arise from the uneven and unsteady forcing from the oncoming wind. In recent years two different and competing IPC techniques have emerged that are characterised by the specific loads that they are primarily designed to attenuate. In the first instance, methodologies such as single-blade control and Clarke Transform-based control have been developed to reduce the unsteady loads on the rotating blades, whilst tilt-yaw control and its many variants instead target load reductions in the non rotating turbine structures, such as the tower and main bearing. Given the seeming disparities between these controllers, the aim of this paper is to show the fundamental performance similarities that exist between them and hence unify research in this area. Specifically, we show that single-blade controllers are equivalent to a particular class of tilt-yaw controller, which itself is equivalent to Clarke~Transform-based control. This means that three architecturally dissimilar IPC controllers exist that yield exactly the same performance in terms of load reductions on fixed and rotating turbine structures. We further demonstrate this outcome by presenting results obtained from high-fidelity closed-loop turbine simulations
Renormalization-Group Improvement of Effective Actions Beyond Summation of Leading Logarithms
Invariance of the effective action under changes of the renormalization scale
leads to relations between those (presumably calculated) terms
independent of at a given order of perturbation theory and those higher
order terms dependent on logarithms of . This relationship leads to
differential equations for a sequence of functions, the solutions of which give
closed form expressions for the sum of all leading logs, next to leading logs
and subsequent subleading logarithmic contributions to the effective action.
The renormalization group is thus shown to provide information about a model
beyond the scale dependence of the model's couplings and masses. This procedure
is illustrated using the model and Yang-Mills theory. In the latter
instance, it is also shown by using a modified summation procedure that the
dependence of the effective action resides solely in a multiplicative
factor of (the running coupling). This approach is also shown to
lead to a novel expansion for the running coupling in terms of the one-loop
coupling that does not require an order-by-order redefinition of the scale
factor . Finally, logarithmic contributions of the instanton
size to the effective action of an SU(2) gauge theory are summed, allowing a
determination of the asymptotic dependence on the instanton size as
goes to infinity to all orders in the SU(2) coupling constant.Comment: latex2e, 30 pages, 2 eps figures embedded in mansucript. v2 corrects
several minor errors in equation
On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics
Observatory (SDO) is designed to study oscillations and the mag- netic field in
the solar photosphere. It observes the full solar disk in the Fe I absorption
line at 6173\AA . We use the output of a high-resolution 3D, time- dependent,
radiation-hydrodynamic simulation based on the CO5BOLD code to calculate
profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles
F({\lambda},x,y,t) are multiplied by a representative set of HMI filter
transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams
I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler
velocities V_HMI(x,y,t) are determined from these filtergrams using a
simplified version of the HMI pipeline. The Doppler velocities are correlated
with the original velocities in the simulated atmosphere. The cross-
correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal
is formed rather low in the solar atmosphere. The same analysis is performed
for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed
slightly higher at around 125 km. Taking into account the limited spatial
resolution of the instruments, the apparent formation height of both the HMI
and MDI Doppler signal increases by 40 to 50 km. We also study how
uncertainties in the HMI filter-transmission profiles affect the calculated
velocities.Comment: 15 pages, 11 Figure
First- principle calculations of magnetic interactions in correlated systems
We present a novel approach to calculate the effective exchange interaction
parameters based on the realistic electronic structure of correlated magnetic
crystals in local approach with the frequency dependent self energy. The analog
of ``local force theorem'' in the density functional theory is proven for
highly correlated systems. The expressions for effective exchange parameters,
Dzialoshinskii- Moriya interaction, and magnetic anisotropy are derived. The
first-principle calculations of magnetic excitation spectrum for ferromagnetic
iron, with the local correlation effects from the numerically exact QMC-scheme
is presented.Comment: 17 pages, 3 Postscript figure
- …