17,744 research outputs found
Design study of a thermocouple power sensor as a monolithic fin-line
Making traceable power measurements above 110 GHz using current measurement technologies is challenging. We investigate a design of power sensor consisting of a thermocouple-based integrated circuit (IC) mounted as a finline component in WR-6 waveguide. The design is original in that it contains an antenna, terminating resistor and thermocouples on-chip. We detail the design and report results from simulations and measurements made on a two-port 16:1 scale model. Our design of scale model provides both insertion and reflection loss measurements. Electromagnetic simulation and easily-calibrated model measurements confirm that the short antenna fins feasible on a monolithic microwave integrated circuit (MMIC) can achieve acceptable specifications. The design proves to be relatively insensitive to the value of the terminating resistance or the size of the antenna fins
Scaling of Electrode-Electrolyte Interface Model Parameters In Phosphate Buffered Saline
We report how the impedance presented by a platinum electrode scales with the concentration of phosphate buffered saline (PBS). We find that the constant phase element of the model scales with approximately the log of concentration, whereas the resistivity is inversely proportional. Using a novel DC measurement technique we show that the Faradaic response of a platinum electrode, and thus the safe exposure limit, does not scale with concentration below 900mV overpotential across a pair of electrodes. We compare objective measurements made in saline to those made in the spinal cavity of live sheep. We comment upon the appropriateness of using PBS as a substitute for living sheep
The energy efficiency of 8-bit low-power microcontrollers
We have measured the energy cost of processing, sleeping, non-volatile memory writes and ADC measurements of six 8-bit microprocessors from three manufacturers. These measurements compare the chips directly to one another and reveal ideal operating points which can be used to reduce energy consumption
Feasibility of Harvesting Power To Run A Domestic Water Meter Using Streaming Cell Technology
We investigate the possibility of using streaming cells as a means of harvesting energy from the town water supply. We measure the electrical power developed from streaming cells using tap water as a working fluid. We estimate the amount of energy available from a typical domestic household based on water usage data. We estimate the amount of energy required to operate a simple data logger and transmitter. From these estimates we calculate the required efficiency and physical form of a streaming cell energy converter. We comment on the feasibility of using streaming cell technology as a means of harvesting energy from a domestic water supply
Choosing the right microcontroller: A comparison of 8-bit Atmel, Microchip and Freescale MCUs
When choosing a microcontroller there are many options, so which platform should you choose? There is little independent information available to help engineers decide which platform might best suit their needs and most designers tend to stick with the brand with which they are familiar. This is a difficult question to answer without bias if the people
conducting the evaluations have had previous experience with MCU programming predominantly on one platform. This article draws on a case study. We built three “Smart” Sprinkler Taps, small, self-contained irrigation controllers, differing only in the microcontroller unit (MCU) on the inside. We compare cost, development software quality and hardware performance from the perspective of a new user to each of the platforms
Back testing multi asset value at risk : Norwegian data
This paper attempts to
e
stimate Value At Risk (VaR) for a multi asset Norwegian
portfolio,
using some of the most popular estimation methods
, Variance Covariance Method,
Historical Simulation and Monte Carlo Simulation
.
The Variance Covariance Method is
applied with both time varying and constant
volatility
.
Each VaR estimation
method
’
s accurac
y is tested
,
using
Kupiec’s
univariate test
ing
framework
,
for multiple single points in the left tail of the portfolio’s return distribution, and
Pérignon and Smith
’s
multivariate
framework
for a larger subset of the left tail.
It compares
each
method
’s ov
erall results
for the Norwegian portfolio
with those found
by Wu et al. (2012)
on a similar Taiwanese portfolio
.
And finally
,
based on the empirical testing
, it attempts
to
draw a conclusion on
which
method is best suited
for Norwegian data
A Novel Analytical Solution to Steady-State Evaporation from Soil and Film Region Thickness
Evaporation from soil and other porous media constitutes a significant source of water loss affecting global water balance and energy exchange between land and atmosphere. The presence of a shallow water table can lead to sustained water loss that is dependent on porous media hydraulic properties and water table depth among other factors. In this paper, an exact analytical solution to steady state evaporation from porous media is developed using the Brooks-Corey hydraulic conductivity model. The solution is presented in terms of a set of infinite series. An advantage of this solution compared to previous derivations is that the infinite series can be very closely approximated using a closed-form solution (i.e., excluding integrals or series). The novel solution shows excellent agreement with the exact solution for a broad range of soil texture from sand to clay. The applicability of the solution to predict the location of the drying front was also verified using experimental data taken from the literature. The solution may be used for directly modeling steady state evaporation or for inverse determination of the Brooks-Corey hydraulic parameters
Numerical Evaluation of Subsurface Soil Water Evaporation Derived From Sensible Heat Balance
A recently introduced measurement approach allows in situ determination of subsurface soil water evaporation by means of heat-pulse probes (HPP). The latent heat component of subsurface evaporation is estimated from the residual of the sensible heat balance. This heat balance method requires measurement of vertical soil temperature and estimates of thermal properties for soil water evaporation determination. Our objective was to employ numerically simulated thermal and hydraulic processes using constant or diurnally cycled surface boundary conditions to evaluate and understand this technique. Three observation grid spacings, namely, 6 mm (tri-needle HPP), 3 mm (penta-needle HPP) and 1 mm, along with three soil textures (sand, silt, and silty clay) were used to test the heat balance method. The comparison of heat balance–based evaporation rate estimates with an independent soil profile water balance revealed substantial errors when thermal conductivity was averaged spatially across the evaporation front. Since the conduction component of heat flux is the dominant process at the evaporation front, the estimation of evaporation rate was significantly improved using depth-dependent instead of a space-averaged . A near-surface “undetectable zone” exists, where the heat balance calculation is irreconcilable, resulting in underestimation of total subsurface evaporation. The method performs better for medium- and coarse-textured soils than for fine-textured soils, where portions of the drying front may be maintained longer within the undetectable zone. Using smaller temperature sensor spacing near the soil surface minimized underestimation from the undetectable zone and improved accuracy of total subsurface evaporation rate estimates
Application of high speed filming techniques to the study of rearwards melt ejection in laser drilling
Melt ejection is the dominant material removal mechanism in long, ms, pulse laser drilling of metals, a process with applications such as the drilling of cooling holes in turbine blades. Droplets of molten material are ejected through the entrance hole and, after breakthrough, through the exit hole. High speed filming is used to study the ejected material in order to better understand how this debris may interact with material in the immediate vicinity of the drilled hole. Existing studies have quantified various aspects of melt ejection, however they usually focus on ejection through the entrance hole. This work concentrates on rear melt ejection and is relevant to issues such as rear wall impingement. A 2kW IPG 200S fibre laser is used to drill mild steel. High speed filming is combined with image analysis to characterise the rearward-ejected material. Particle size and velocity data is presented as a function of drilling parameters. It is concluded that high speed filming combined with image analysis and proper consideration of process limitations and optimisation strategies can be a powerful tool in understanding resultant debris distributions
- …