137 research outputs found

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-Line Region

    Full text link
    We present models of the HÎČ\beta-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of log⁥10(MBH/M⊙)=6.48−0.18+0.21\log_{10}(M_{\rm BH}/M_\odot) = 6.48^{+0.21}_{-0.18} for PG 1310−-108, 7.50−0.18+0.257.50^{+0.25}_{-0.18} for Mrk 50, 7.46−0.21+0.157.46^{+0.15}_{-0.21} for Mrk 141, 7.58−0.08+0.087.58^{+0.08}_{-0.08} for Mrk 279, 7.11−0.17+0.207.11^{+0.20}_{-0.17} for Mrk 1511, 6.65−0.15+0.276.65^{+0.27}_{-0.15} for NGC 4593, and 6.94−0.14+0.146.94^{+0.14}_{-0.14} for Zw 229−-015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor ff used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find log⁥10(frms,σ)pred=0.57±0.19\log_{10}(f_{{\rm rms},\sigma})_{\rm pred} = 0.57 \pm 0.19. Finally, we search for correlations between ff and other AGN and BLR parameters and find marginal evidence that ff is correlated with MBHM_{\rm BH} and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio.Comment: 26 pages, 14 figures. Accepted for publication in Ap

    Methodological Standardization for the Pre-Clinical Evaluation of Renal Sympathetic Denervation

    Get PDF
    Transcatheter ablation of renal autonomic nerves is a viable option for the treatment of resistant arterial hypertension; however, structured pre-clinical evaluation with standardization of analytical procedures remains a clear gap in this field. Here we discuss the topics relevant to the pre-clinical model for the evaluation of renal denervation (RDN) devices and report methodologies and criteria toward standardization of the safety and efficacy assessment, including histopathological evaluations of the renal artery, periarterial nerves, and associated periadventitial tissues. The pre-clinical swine renal artery model can be used effectively to assess both the safety and efficacy of RDN technologies. Assessment of the efficacy of RDN modalities primarily focuses on the determination of the depth of penetration of treatment-related injury (e.g., necrosis) of the periarterial tissues and its relationship (i.e., location and distance) and the effect on the associated renal nerves and the correlation thereof with proxy biomarkers including renal norepinephrine concentrations and nerve-specific immunohistochemical stains (e.g., tyrosine hydroxylase). The safety evaluation of RDN technologies involves assessing for adverse effects on tissues local to the site of treatment (i.e., on the arterial wall) as well as tissues at a distance (e.g., soft tissue, veins, arterial branches, skeletal muscle, adrenal gland, ureters). Increasing experience will help to create a standardized means of examining all arterial beds subject to ablative energy and in doing so enable us to proceed to optimize the development and assessment of these emerging technologies

    Acute Thrombogenicity of a Durable Polymer Everolimus-Eluting Stent Relative to Contemporary Drug-Eluting Stents With Biodegradable Polymer Coatings Assessed Ex Vivo in a Swine Shunt Model

    Get PDF
    AbstractObjectivesThis study sought to evaluate whether the permanent fluoropolymer-coated Xience Xpedition everolimus-eluting stent (Xience-EES) exhibits lower acute thrombogenicity compared with contemporary drug-eluting stents (DES) with biodegradable polymer coatings in an acute swine shunt model.BackgroundPrevious pre-clinical and clinical experience suggests that several factors may influence the predisposition for acute thrombus formation of polymer-coated DES, including stent design and the polymer coating technology. It remains unclear whether relevant differences exist with respect to acute thrombogenicity, particularly between current commercial stent designs using permanent polymers and those using biodegradable polymers.MethodsAn ex vivo carotid to jugular arteriovenous porcine shunt model involving a test circuit of 3 in-line stents, was used to test acute thrombogenicity, where Xience-EES (n = 24) was compared with 4 CE-marked DES with biodegradable polymer coatings (BioMatrix Flex, Synergy, Nobori, and Orsiro [n = 6 each]). After 1 h of circulation, platelet aggregation in whole mount stents was evaluated by confocal microscopy with immunofluorescent staining against dual platelet markers (CD61/CD42b) along with scanning electron microscopy.ResultsXience-EES showed the least percentage of thrombus-occupied area as compared with the biodegradable polymer-coated DES, with a significant difference compared with BioMatrix Flex and Synergy (mean differences: [BioMatrix Flex: 15.54, 95% confidence interval [CI]: 11.34 to 19.75, p < 0.001; Synergy: 8.64, 95% CI: 4.43 to 12.84, p < 0.001; Nobori: 4.22, 95% CI: -0.06 to 8.49, p = 0.055; Orsiro: 2.95, 95% CI: -1.26 to 7.15, p = 0.286). The number of cell nuclei on strut surfaces was also the least in Xience-EES, with a significant difference relative to BioMatrix Flex, Nobori, and Orsiro (mean ratios: BioMatrix Flex: 4.73, 95% CI: 2.46 to 9.08, p < 0.001; Synergy: 1.44, 95% CI: 0.75 to 2.76, p = 0.51; Nobori: 5.97, 95% CI: 3.11 to 11.44, p < 0.001; Orsiro: 5.16, 95% CI: 2.69 to 9.91, p < 0.001).ConclusionsXience-EES’s overall design confers acute thromboresistance relative to contemporary DES with biodegradable coatings, with less platelet aggregation versus BioMatrix Flex and Synergy, and less inflammatory cell attachment versus BioMatrix Flex, Nobori, and Orsiro, in an ex vivo swine shunt model, which lends support to reported clinical findings of lower early stent thrombosis

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M∗=1.438−0.052+0.061M⊙M_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R∗=2.72−0.17+0.21R⊙R_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g∗=3.727−0.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.37−0.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.093−0.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm−3^{-3}, surface gravity log gP=2.407−0.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=1712−46+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal

    Reverberation Mapping of the Kepler-Field AGN KA1858+4850

    Full text link
    KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies monitored by the Kepler mission. We have carried out a reverberation mapping campaign designed to measure the broad-line region size and estimate the mass of the black hole in this galaxy. We obtained 74 epochs of spectroscopic data using the Kast Spectrograph at the Lick 3-m telescope from February to November of 2012, and obtained complementary V-band images from five other ground-based telescopes. We measured the H-beta light curve lag with respect to the V-band continuum light curve using both cross-correlation techniques (CCF) and continuum light curve variability modeling with the JAVELIN method, and found rest-frame lags of lag_CCF = 13.53 (+2.03, -2.32) days and lag_JAVELIN = 13.15 (+1.08, -1.00) days. The H-beta root-mean-square line profile has a width of sigma_line = 770 +/- 49 km/s. Combining these two results and assuming a virial scale factor of f = 5.13, we obtained a virial estimate of M_BH = 8.06 (+1.59, -1.72) x 10^6 M_sun for the mass of the central black hole and an Eddington ratio of L/L_Edd ~ 0.2. We also obtained consistent but slightly shorter emission-line lags with respect to the Kepler light curve. Thanks to the Kepler mission, the light curve of KA1858+4850 has among the highest cadences and signal-to-noise ratios ever measured for an active galactic nucleus; thus, our black hole mass measurement will serve as a reference point for relations between black hole mass and continuum variability characteristics in active galactic nuclei

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50

    Get PDF
    We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure
    • 

    corecore