126 research outputs found

    Chronic Morphine Alters the Presynaptic Protein Profile: Identification of Novel Molecular Targets Using Proteomics and Network Analysis

    Get PDF
    Opiates produce significant and persistent changes in synaptic transmission; knowledge of the proteins involved in these changes may help to understand the molecular mechanisms underlying opiate dependence. Using an integrated quantitative proteomics and systems biology approach, we explored changes in the presynaptic protein profile following a paradigm of chronic morphine administration that leads to the development of dependence. For this, we isolated presynaptic fractions from the striata of rats treated with saline or escalating doses of morphine, and analyzed the proteins in these fractions using differential isotopic labeling. We identified 30 proteins that were significantly altered by morphine and integrated them into a protein-protein interaction (PPI) network representing potential morphine-regulated protein complexes. Graph theory-based analysis of this network revealed clusters of densely connected and functionally related morphine-regulated clusters of proteins. One of the clusters contained molecular chaperones thought to be involved in regulation of neurotransmission. Within this cluster, cysteine-string protein (CSP) and the heat shock protein Hsc70 were downregulated by morphine. Interestingly, Hsp90, a heat shock protein that normally interacts with CSP and Hsc70, was upregulated by morphine. Moreover, treatment with the selective Hsp90 inhibitor, geldanamycin, decreased the somatic signs of naloxone-precipitated morphine withdrawal, suggesting that Hsp90 upregulation at the presynapse plays a role in the expression of morphine dependence. Thus, integration of proteomics, network analysis, and behavioral studies has provided a greater understanding of morphine-induced alterations in synaptic composition, and identified a potential novel therapeutic target for opiate dependence

    Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia

    Get PDF
    The pharmacological agent nitroglycerin (NTG) elicits hyperalgesia and allodynia in mice. This model has been used to study the neurological disorder of trigeminovascular pain or migraine, a debilitating form of hyperalgesia. The present study validates hyperalgesia in an established mouse model of chronic migraine triggered by NTG and advances the understanding of the associated molecular mechanisms. The RNA-seq profiles of two nervous system regions associated with pain, the trigeminal ganglia (TG) and the nucleus accumbens (NAc), were compared in mice receiving chronic NTG treatment relative to control (CON) mice. Among the 109 genes that exhibited an NTG treatment-by-region interaction, solute carrier family 32 (GABA vesicular transporter) member 1 (Slc32a1) and preproenkephalin (Penk) exhibited reversal of expression patterns between the NTG and CON groups. Erb-b2 receptor tyrosine kinase 4 (Erbb4) and solute carrier family 1 (glial high affinity glutamate transporter) member 2 (Slc1a2) exhibited consistent differential expression between treatments across regions albeit at different magnitude. Period circadian clock 1 (Per1) was among the 165 genes that exhibited significant NTG treatment effect. Biological processes disrupted by NTG in a region-specific manner included adaptive and innate immune responses; whereas glutamatergic and dopaminergic synapses and rhythmic process were disrupted in both regions. Regulatory network reconstruction highlighted the widespread role of several transcription factors (including Snrnp70, Smad1, Pax6, Cebpa, and Smpx) among the NTG-disrupted target genes. These results advance the understanding of the molecular mechanisms of hyperalgesia that can be applied to therapies to ameliorate chronic pain and migraine

    Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    Get PDF
    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides

    Circadian Integration of Glutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits

    Get PDF
    Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock

    Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development

    Get PDF
    Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system

    Subcellular Analysis of d

    No full text
    • …
    corecore