18 research outputs found

    Reducing biting rates of Aedes aegypti with metofluthrin: investigations in time and space

    Get PDF
    Background: Indoor residual spraying is key to dengue control in Cairns and other parts of northern Queensland, Australia, where Aedes aegypti is prevalent, but the strategy faces challenges with regards to slow application time and, therefore, community coverage. A faster potential improvement might be the use of polyethylene netting impregnated with the volatile pyrethroid metofluthrin (SumiOne™). This formulation was assessed in rooms in three houses in Cairns, Australia. One emanator was placed in each room and cages of 10 female Aedes aegypti were exposed at distances of 1 and 3 m. Knockdown and landings on a human hand were counted before metofluthrin exposure and at 10, 30, 60, 90 and 120 min during exposure. In addition, two trials continued over 48 h of exposure to assess the long-term sublethal effects of metofluthrin on caged mosquitoes. Results: Percentage landing rates fell to 0-2.5% in the first 10 min of exposure. Knockdown was most evident between 10 and 30 min (54% at 1 m and 33% at 3 m). Distance from the emanator strongly affected the results: mosquitoes at 3 m exhibited less knockdown and more landings than those at 1 m. As room volume increased, knockdown decreased and the number of landing increased. There is a cumulative mortality and landing inhibition and, for mosquitoes exposed to metofluthrin for > 48 h, mortality was 100% at 1 m and 90% at 3 m. Of those still alive, a small number continued to land and bite. After being removed from metofluthrin-treated rooms, exposed insect cages were found to reducing landing rates for up to 2 h. Conclusions: Despite only moderate levels of knockdown during the initial hours of exposure, metofluthrin emanators were effective in reducing mosquito landing rates, especially within 1 m, even when exposed on an open veranda. The evaluation methods and results described in this paper will help inform the optimal conditions of deployment of metofluthrin emanators. These devices have the potential to reduce contact between humans and urban disease vectors faster than indoor residual spraying so supplement our current arsenal of dengue control tools

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Effects of Beauveria bassiana on survival, blood-feeding success and fecundity of Aedes aegypti in laboratory and semi-field conditions

    No full text
    The fungus Beauveria bassiana reduces Aedes aegypti longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female Ae. aegypti infected with B. bassiana (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter×7 meter×4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59–95% in large cages compared with 61–69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. Beauveria bassiana can kill and may reduce biting of Ae. aegypti in semi-field conditions and in the laboratory. These results further support the use of B. bassiana as a potential biocontrol agent against Ae. aegypti

    Urban landscape features influence the movement and distribution of the Australian container-inhabiting mosquito vectors Aedes aegypti (Diptera: Culicidae) and Aedes notoscriptus (Diptera: Culicidae)

    No full text
    Urban landscape features play an important role in the distribution and population spread of mosquito vectors. Furthermore, current insecticide and novel rear-and-release strategies for urban mosquito management rarely consider the spatial structure of the landscape when applying control practices. Here, we undertake a mark-recapture experiment to examine how urban features influence the movement and distribution of Australian container-inhabiting Aedes vectors. We pay attention to the role of semipermanent water storage containers, called rainwater tanks, and the influence of movement barriers, such as roads, on the spread and distribution of vector populations. Results suggest that Aedes aegypti (Linnaeus) (Diptera: Culicidae) were more likely to be captured around rainwater tanks, and that released males travel throughout residential blocks but do not cross roads. Conversely, female Aedes notoscriptus (Skuse) (Diptera: Culicidae) movement was uninhibited by roads and rainwater tanks did not influence female distribution or oviposition behavior. Using an isotropic Gaussian kernel framework, we show that vector movement is likely to be greater when applying a temporal effect, than when estimated by traditional methods. We conclude that a greater understanding on the role of urban features on vector movement will be important in the new age of rear-and-release mosquito control strategies, particularly those where estimations of movement are important for ensuring efficacy of application

    The new European invader Aedes (Finlaya) koreicus: a potential vector of chikungunya virus

    No full text
    Arthropod-borne disease outbreaks, facilitated by the introduction of exotic mosquitoes, pose a significant public health threat. Recent chikungunya virus (CHIKV) epidemics in Europe highlight the importance of understanding the vector potential of invading mosquitoes. In this paper we explore the potential of Aedes koreicus, a mosquito new to Europe, to transmit CHIKV. Mosquitoes were challenged with CHIKV and maintained at two temperatures: 23\ua0°C and a fluctuating temperature. Total CHIKV infection rates at 3, 10 and 14\ua0days post-feeding were low for both temperature treatments (13.8% at 23\ua0°C; 6.2% at fluctuating T). A low percentage (6.1%, n\ua0=\ua065) of mosquitoes maintained at a constant 23\ua0°C showed dissemination of the virus to the wings and legs. Infection of mosquito saliva, with live virus, occurred in 2 mosquitoes. No dissemination was noted under the fluctuating temperature regime. Based on these results we conclude that CHIKV transmission by this species is possible

    The elimination of the dengue vector, <i>Aedes aegypti</i>, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy

    No full text
    <div><p><i>Aedes aegypti</i> (L.) (Diptera: Culicidae) is a highly invasive mosquito whose global distribution has fluctuated dramatically over the last 100 years. In Australia the distribution of <i>Ae</i>. <i>aegypti</i> once spanned the eastern seaboard, for 3,000 km north to south. However, during the 1900s this distribution markedly reduced and the mosquito disappeared from its southern range. Numerous hypotheses have been proffered for this retraction, however quantitative evidence of the mechanisms driving the disappearance are lacking. We examine historical records during the period when <i>Ae</i>. <i>aegypti</i> disappeared from Brisbane, the largest population centre in Queensland, Australia. In particular, we focus on the targeted management of <i>Ae</i>. <i>aegypti</i> by government authorities, that led to local elimination, something rarely observed in large cities. Numerous factors are likely to be responsible including the removal of larval habitat, especially domestic rainwater tanks, in combination with increased mosquito surveillance and regulatory enforcement. This account of historical events as they pertain to the elimination of <i>Ae</i>. <i>aegypti</i> from Brisbane, will inform assessments of the risks posed by recent human responses to climate change and the reintroduction of 300,000 rainwater tanks into the State over the past decade.</p></div
    corecore