31 research outputs found

    Statistical multifrequency study of narrow-line Seyfert 1 galaxies

    Full text link
    High-energy {\gamma}-rays, which are produced by powerful relativistic jets, are usually associated with blazars and radio galaxies. In the current active galactic nuclei (AGN) paradigm, such jets are almost exclusively launched from massive elliptical galaxies. Recently, however, Fermi/LAT detected {\gamma}-rays from a few narrow-line Seyfert 1 galaxies and thus confirmed the presence of relativistic jets in them. Since NLS1 galaxies are assumed to be young evolving AGN, they offer a unique opportunity to study the production of relativistic jets in late-type galaxies. Our aim is to estimate by which processes the emission of various kinds is produced in NLS1 galaxies and to study how emission properties are connected to other intrinsic AGN properties. We have compiled the so far largest multiwavelength database of NLS1 sources. This allowed us to explore correlations between different wavebands and source properties using, for example, Pearson and Spearman correlations and principal component analysis. We did this separately for radio-loud and radio-quiet sources. Multiwavelength correlations suggest that radio-loud sources host relativistic jets that are the predominant sources of radio, optical, and X-ray emission. The origin of infrared emission remains unclear. Radio-quiet sources do not host a jet, or the jet is very weak. In them, radio and infrared emission is more likely generated via star formation processes, and the optical and X-ray emission originate in the inner parts of the AGN. We also find that the black hole mass correlates significantly with radio loudness, which suggests that NLS1 galaxies with more massive black holes are more likely to be able to launch powerful relativistic jets.Comment: 29 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    Cluster Galaxy Morphologies: The Relationship among Structural Parameters, Activity and the Environment

    Full text link
    We use an approach to estimate galaxy morphologies based on an ellipticity (e) vs. Bulge-to-Total ratio (B/T) plane. We have calibrated this plane by comparing with Dressler's classifications. With the aid of our calibration, we have classified 635 galaxies in 18 Abell clusters (0.02 < z < 0.08). Our approach allowed us to recover the Kormendy's relation. We found that ellipticals and Spirals are slightly brighter than S0 in R band. As S0 bulges are brighter than spirals bulges, we believe that ram pressure is not the main mechanism to generate S0s. In our sample, cluster radio galaxies morphologies cover the range S0-E-cD and their bulges have absolutes magnitudes distributed within -21 mag < M < -24.5 mag. If we believe Ferrarese & Merrit's relation, these radio sources have 10^8-10^9 M black hole mass.Comment: Originally published in the proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", AIP Conference Proceedings, Volume 1201 edited by Sebastian Heinz and Eric Wilcots. This version contains slight modification

    Discovery of a pseudobulge galaxy launching powerful relativistic jets

    No full text
    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole-galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven

    Discovery of a Pseudobulge Galaxy Launching Powerful Relativistic Jets

    Get PDF
    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole-galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.</p
    corecore