377 research outputs found

    Root reinforcement: continuum framework for constitutive modelling

    Get PDF
    The mechanical contribution of plant roots to soil strength has typically been studied at the ultimate limit state only. Since many geotechnical problems are related to serviceability, such as deformation of infrastructure, a new constitutive modelling framework is introduced. The rooted soil is treated as a composite material with separate constitutive relationships for soil and roots, and a comprehensive stress-strain relationship for the root constituent is presented.The model is compared to direct shear experiments on field soil reinforced with gorse, grass and willow roots, as well as an existing root reinforcement model based on Winkler-spring supported beam theory.The results show that both the newly developed model and the beam-type model yield good predictions for the evolution of root-reinforced shear strength as a function of increasing shear displacements. Both successfully capture the large deformations required to reach peak reinforcement, the reduction in reinforcement due to root breakage and the presence of significant reinforcement even after very large deformations, associated with root slippage.Since both fibre and beam models only require physically meaningful input parameters, they can be useful tools to study the mobilisation of rooted soil strength and simulate the response of rooted soil in continuum-based numerical simulations

    Root branching affects the mobilisation of root-reinforcement in direct shear

    Get PDF
    The contribution of roots to the mechanical behaviour of soil has typically only been studied for the ultimate limit state. In these approaches, roots are typically modelled as straight and unbranched structures. This approach overlooks the fact that roots may have to deform significantly to mobilise their strength, a process that will be influenced by root architecture effects such as branching, amongst others. Sequential mobilisation of roots affects the peak root-reinforcement, thus differences in mobilisation are important to consider when quantifying root-reinforcement. In this paper, the effect of root branching was modelled using a large-deformation Euler-Bernoulli beam-spring model. The effect of soil was incorporated using non-linear springs, similar to p-y and t-z theory used for foundation piles. By connecting multiple beams together (i.e. applying appropriate linked boundary conditions at root connection points) the effect of branching could be analysed. A soil displacement profile corresponding with direct shear loading was then imposed and the response of the root analysed. It was shown that adding branches led to a quicker mobilisation of root-reinforcement. Branches increased the axial resistance to root displacement and changed the shape of the deformed roots. The presence of branching counteracted root slippage, and thus increased reinforcement. Larger branching densities increased this effect. This analysis demonstrated that the architecture of the root system has a strong effect on the mobilisation of root strength, which directly affects the maximum amount of reinforcement the roots will provide. Future modelling of root-reinforcement, both at the ultimate and serviceable limit state, should account for this effect

    Cultural Antecedents to Community: An Evaluation of Community Experience in the United States, Thailand, and Vietnam

    Full text link
    To what extent does community experience differ between low‐context and high‐context societies? Prior literature theorizes that community experience consists of two separate, yet highly related concepts: community attachment, an individual’s general rootedness to a place, and community satisfaction, how well an individual’s community meets their societal needs. We test this conceptualization of community experience across communities in the United States and two Southeast Asian nations: Thailand and Vietnam. We argue that Southeast Asian nations constitute “high‐context” societies with relatively high social integration and solidarity while the United States is more individualized and less socially integrated and thus constitutes a “low‐context” society. Our results provide empirical evidence that individuals’ experience of community varies between low‐ and high‐context societies. These results demonstrate that cultural context continues to matter in regards to the lived experience of community and researchers need to remain vigilant in accounting for such differences as they seek to examine the concept of community more broadly.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144606/1/cico12300.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144606/2/cico12300-sup-0001-CommAppendices.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144606/3/cico12300_am.pd

    Global survey of the frequency of atrial fibrillation-associated stroke: embolic stroke of undetermined source global registry

    Get PDF
    Background and Purpose—Atrial fibrillation (AF) is increasingly recognized as the single most important cause of disabling ischemic stroke in the elderly. We undertook an international survey to characterize the frequency of AF-associated stroke, methods of AF detection, and patient features. Methods—Consecutive patients hospitalized for ischemic stroke in 2013 to 2014 were surveyed from 19 stroke research centers in 19 different countries. Data were analyzed by global regions and World Bank income levels. Results—Of 2144 patients with ischemic stroke, 590 (28%; 95% confidence interval, 25.6–29.5) had AF-associated stroke, with highest frequencies in North America (35%) and Europe (33%) and lowest in Latin America (17%). Most had a history of AF before stroke (15%) or newly detected AF on electrocardiography (10%); only 2% of patients with ischemic stroke had unsuspected AF detected by poststroke cardiac rhythm monitoring. The mean age and 30-day mortality rate of patients with AF-associated stroke (75 years; SD, 11.5 years; 10%; 95% confidence interval, 7.6–12.6, respectively) were substantially higher than those of patients without AF (64 years; SD, 15.58 years; 4%; 95% confidence interval, 3.3–5.4; P<0.001 for both comparisons). There was a strong positive correlation between the mean age and the frequency of AF (r=0.76; P=0.0002). Conclusions—This cross-sectional global sample of patients with recent ischemic stroke shows a substantial frequency of AF-associated stroke throughout the world in proportion to the mean age of the stroke population. Most AF is identified by history or electrocardiography; the yield of conventional short-duration cardiac rhythm monitoring is relatively low. Patients with AF-associated stroke were typically elderly (>75 years old) and more often women

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients
    • 

    corecore