18 research outputs found

    Jasmonate-induced defense mechanisms in the belowground antagonistic interaction between Pythium arrhenomanes and Meloidogyne graminicola in rice

    Get PDF
    Next to their essential roles in plant growth and development, phytohormones play a central role in plant immunity against pathogens. In this study we studied the previously reported antagonism between the plant-pathogenic oomycete Pythium arrhenomanes and the root-knot nematode Meloidogyne graminicola, two root pathogens that co-occur in aerobic rice fields. In this manuscript, we investigated if the antagonism is related to imbalances in plant hormone levels, which could be involved in activation of plant defense. Hormone measurements and gene expression analyses showed that the jasmonate (JA) pathway is induced early upon P. arrhenomanes infection. Exogenous application of methyl-jasmonate (MeJA) on the plant confirmed that JA is needed for basal defense against both P. arrhenomanes and M. graminicola in rice. Whereas M. graminicola suppresses root JA levels to increase host susceptibility, Pythium inoculation boosts JA in a manner that prohibits JA repression by the nematode in double-inoculated plants. Exogenous MeJA supply phenocopied the defense-inducing capacity of Pythium against the root-knot nematode, whereas the antagonism was weakened in JA-insensitive mutants. Transcriptome analysis confirmed upregulation of JA biosynthesis and signaling genes upon P. arrhenomanes infection, and additionally revealed induction of genes involved in biosynthesis of diterpenoid phytoalexins, consistent with strong activation of the gene encoding the JA-inducible transcriptional regulator DITERPENOID PHYTOALEXIN FACTOR. Altogether, the here-reported data indicate an important role for JA-induced defense mechanisms in this antagonistic interaction. Next to that, our results provide evidence for induced expression of genes encoding ERF83, and related PR proteins, as well as auxin depletion in P. arrhenomanes infected rice roots, which potentially further contribute to the reduced nematode susceptibility seen in double-infected plants

    Target of rapamycin signaling orchestrates growth-defense trade-offs in plants

    Get PDF
    Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity

    Towards establishing broad-spectrum disease resistance in plants: silicon leads the way

    No full text
    Plants are constantly threatened by a wide array of microbial pathogens. Pathogen invasion can lead to vast yield losses and the demand for sustainable plant-protection strategies has never been greater. Chemical plant activators and selected strains of rhizobacteria can increase resistance against specific types of pathogens but these treatments are often ineffective or even cause susceptibility against others. Silicon application is one of the scarce examples of a treatment that effectively induces broad-spectrum disease resistance. The prophylactic effect of silicon is considered to be the result of both passive and active defences. Although the phenomenon has been known for decades, very little is known about the molecular basis of silicon-afforded disease control. By combining knowledge on how silicon interacts with cell metabolism in diatoms and plants, this review describes silicon-induced regulatory mechanisms that might account for broad-spectrum plant disease resistance. Priming of plant immune responses, alterations in phytohormone homeostasis, regulation of iron homeostasis, silicon-driven photorespiration and interaction with defence signalling components all are potential mechanisms involved in regulating silicon-triggered resistance responses. Further elucidating how silicon exerts its beneficial properties may create new avenues for developing plants that are better able to withstand multiple attackers
    corecore