594 research outputs found

    The feasibility and malleability of EBM+

    Get PDF
    The EBM+ programme is an attempt to improve the way in which present-day evidence-based medicine (EBM) assesses causal claims: according to EBM+, mechanistic studies should be scrutinised alongside association studies. This paper addresses two worries about EBM+: (i) that it is not feasible in practice, and (ii) that it is too malleable, i.e., its results depend on subjective choices that need to be made in order to implement the procedure. Several responses to these two worries are considered and evaluated. The paper also discusses the question of whether we should have confidence in medical interventions, in the light of Stegenga's arguments for medical nihilism

    The Principal Principle Implies the Principle of Indifference

    Get PDF
    We argue that David Lewis’s principal principle implies a version of the principle of indifference. The same is true for similar principles that need to appeal to the concept of admissibility. Such principles are thus in accord with objective Bayesianism, but in tension with subjective Bayesianism. 1 The Argument 2 Some Objections Me

    The philosophy of science and its relation to machine learning

    Get PDF
    In this chapter I discuss connections between machine learning and the philosophy of science. First I consider the relationship between the two disciplines. There is a clear analogy between hypothesis choice in science and model selection in machine learning. While this analogy has been invoked to argue that the two disciplines are essentially doing the same thing and should merge, I maintain that the disciplines are distinct but related and that there is a dynamic interaction operating between the two: a series of mutually beneficial interactions that changes over time. I will introduce some particularly fruitful interactions, in particular the consequences of automated scientific discovery for the debate on inductivism versus falsificationism in the philosophy of science, and the importance of philosophical work on Bayesian epistemology and causality for contemporary machine learning. I will close by suggesting the locus of a possible future interaction: evidence integration.

    DELIBERATION, JUDGEMENT AND THE NATURE OF EVIDENCE

    Get PDF
    A normative Bayesian theory of deliberation and judgement requires a procedure for merging the evidence of a collection of agents. In order to provide such a procedure, one needs to ask what the evidence is that grounds Bayesian probabilities. After finding fault with several views on the nature of evidence (the views that evidence is knowledge; that evidence is whatever is fully believed; that evidence is observationally set credence; that evidence is information), it is argued that evidence is whatever is rationally taken for granted. This view is shown to have consequences for an account of merging evidence, and it is argued that standard axioms for merging need to be altered somewhat

    Justifying Objective Bayesianism on Predicate Languages

    Get PDF
    Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian norms in the case in which the background language is a first-order predicate language, with a view to applying the resulting formalism to inductive logic. We show that the maximum entropy principle can be motivated largely in terms of minimising worst-case expected loss

    Objective Bayesian nets from consistent datasets

    Get PDF
    This paper addresses the problem of finding a Bayesian net representation of the probability function that agrees with the distributions of multiple consistent datasets and otherwise has maximum entropy. We give a general algorithm which is significantly more efficient than the standard brute-force approach. Furthermore, we show that in a wide range of cases such a Bayesian net can be obtained without solving any optimisation problem

    Mechanisms and the Evidence Hierarchy

    Get PDF
    Evidence-based medicine (EBM) makes use of explicit procedures for grading evidence for causal claims. Normally, these procedures categorise evidence of correlation produced by statistical trials as better evidence for a causal claim than evidence of mechanisms produced by other methods. We argue, in contrast, that evidence of mechanisms needs to be viewed as complementary to, rather than inferior to, evidence of correlation. In this paper we first set out the case for treating evidence of mechanisms alongside evidence of correlation in explicit protocols for evaluating evidence. Next we provide case studies which exemplify the ways in which evidence of mechanisms complements evidence of correlation in practice. Finally, we put forward some general considerations as to how the two sorts of evidence can be more closely integrated by EBM

    Establishing causal claims in medicine

    Get PDF
    Russo and Williamson (2007) put forward the following thesis: in order to establish a causal claim in medicine, one normally needs to establish both that the putative cause and putative effect are appropriately correlated and that there is some underlying mechanism that can account for this correlation. I argue that, although the Russo-Williamson thesis conflicts with the tenets of present-day evidence-based medicine (EBM), it offers a better causal epistemology than that provided by present-day EBM because it better explains two key aspects of causal discovery. First, the thesis better explains the role of clinical studies in establishing causal claims. Second, it yields a better account of extrapolation
    • …
    corecore