29 research outputs found

    Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    Get PDF
    BACKGROUND:The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. METHODOLOGY/PRINCIPAL FINDINGS:Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines ("XEN-P cell lines"), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. CONCLUSIONS/SIGNIFICANCE:Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation

    Embryo development and maternal-embryo nutritional relationships of piked spurdog (Squalus megalops)

    No full text
    The original publication can be found at www.springerlink.comThe maternal-embryo relationship was determined for the piked spurdog (Squalus megalops). In addition, the increase in offspring size with maternal size was studied and the embryonic development was described. Wet weight of in utero eggs and offspring size was correlated with maternal size; larger females produced larger embryos which would have higher survival rate and reproductive value. All embryos present in a female were at a similar stage of development. The external yolk sac is reabsorbed late in gestation, suggesting that embryos are mostly nourished by yolk sac reserves. Embryo size-at-birth varied considerably (180-244 mm total length) as a result of the significant variability in ova size at ovulation. The amounts of water, organic and inorganic matter of embryos at different stages of development were measured to determine possible maternal contributions during embryonic development. Total wet weight from smallest and largest in utero eggs to smallest and largest term embryos changed by +46 and +58%, respectively. This pattern was due to a change in water content by +137 and +154%, and inorganic matter by +100 and +156%. Organic matter of smallest and largest in utero eggs changed by −23 and −17%, respectively. The uterus of pregnant females became specialised for water and mineral transport, not nutrient provision. These results indicate that S. megalops is a strict yolk-sac viviparous species with no maternal contribution of organic matter during development.J. M. Braccini, W. C. Hamlett, B. M. Gillanders and T. I. Walke
    corecore