45 research outputs found

    A multicenter clinical evaluation of the Clot Signature Analyzer

    Full text link
    Background : The Clot Signature Analyzer (CSA) was designed to assess global hemostasis as a screening assay using non-anticoagulated whole blood. Three different measurements are produced by the instrument: platelet hemostasis time (PHT), clot time (CT), and collagen-induced thrombus formation (CITF). Objectives : The purpose of the present study was to determine normal ranges for these measurements and assess the performance of the CSA in patients with well-characterized hemostatic disorders and in normal subjects. Patients and methods : Four institutions participated in the study. Each established their own normal reference ranges. Patients with well-characterized hemostatic disorders and concurrent normal controls were subsequently examined. Results : Normal ranges between institutions were similar although statistically different. One hundred and eight patients were examined: 46 individuals with von Willebrand disease (VWD) (type 1, 26; type 2A, 11; type 2B, six; type 3, three); 38 patients with a coagulation factor deficiency; 13 individuals with platelet function defects; 10 patients taking warfarin; and one individual on low-molecular-weight heparin. Of these patients, 89% had at least one abnormality by CSA: 42/46 VWD patients, 35/38 coagulation protein defect patients, 9/13 patients with platelet function defects, 9/10 patients on warfarin and 1/1 patient on low-molecular-weight heparin. Of 116 normal subjects, 103 (89%) fell within the centers' normal range. These data suggest that the CSA has a good sensitivity for bleeding disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73054/1/j.1538-7836.2004.00695.x.pd

    Magnetic Resonance Imaging of the Axial Skeleton in Patients With Spondyloarthritis: Distribution Pattern of Inflammatory and Structural Lesions

    Get PDF
    Purpose: Spondyloarthritis is a chronic inflammatory disorder of the musculoskeletal system driven by systemic enthesitis and typically involving the axial skeleton, ie, the spine and the sacroiliac joints. The purpose of this study was to assess the distribution pattern of inflammatory and structural magnetic resonance imaging (MRI) findings in spondyloarthritis. Methods: Retrospective study of 193 patients with axial spondyloarthritis who received MRI of the spine and the sacroiliac joints. We quantitatively assessed inflammatory and structural lesions using established MRI-based scoring methods. The significance of the differences between gender, HLA-B27 status, and spine and sacroiliac involvement was determined. Results: In total, 174 patients (90.2%) showed a sacroiliac involvement and 120 patients (62.2%) a combined involvement of the sacroiliac joints and the spine. An isolated sacroiliac involvement was found in 54 patients (28.0%) and an isolated spine involvement in 19 patients (9.8%). The sacroiliac joint was significantly more involved in men than in women (P < .01), and men had significantly higher scores for structural lesions (P < .001). The subgroup of HLA-B27–positive patients showed a significantly higher percentage of sacroiliac involvement compared with HLA-B27–negative patients (P < .05). Conclusions: Spondyloarthritis is a systemic disorder predominantly involving the sacroiliac joints. However, the entire axial skeleton may be affected. In particular, HLA-B27–negative women show atypical manifestations without sacroiliac involvement. Magnetic resonance imaging in spondyloarthritis should cover the entire axial skeleton, ie, sacroiliac joints and the spine to meet the pathophysiology of this disorder and capture the true extent of inflammatory and structural lesions

    Effect of tube diameter and capillary number on platelet margination and near-wall dynamics

    Get PDF
    The effect of tube diameter DD and capillary number CaCa on platelet margination in blood flow at ≈37%\approx 37\% tube haematocrit is investigated. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results show that margination is facilitated by a non-diffusive radial platelet transport. This effect is important near the edge of the cell-free layer, but it is only observed for Ca>0.2Ca > 0.2, when red blood cells are tank-treading rather than tumbling. It is also shown that platelet trapping in the cell-free layer is reversible for Ca≤0.2Ca \leq 0.2. Only for the smallest investigated tube (D=10μmD = 10 \mu\text{m}) margination is essentially independent of CaCa. Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of CaCa but increases with DD. Tumbling is suppressed by the strong confinement due to the relatively small cell-free layer thickness at ≈37%\approx 37\% tube haematocrit.Comment: 16 pages, 10 figure

    Posttraumatische Rekonstruktion des kindlichen Humerus mit Rippeninterponat.

    No full text

    Apparent cellulitis with a prolonged APTT

    No full text

    Aspirin-Dipyridamole Prophylaxis of Sickle Cell Disease Pain Crises

    No full text
    corecore