6,872 research outputs found
Development of a simulation-based decision support tool for renewable energy integration and demand-supply matching
This paper describes a simulation-based decision support tool, MERIT, which has been developed to assist in the assessment of renewable energy systems by focusing on the degree of match achievable between energy demand and supply. Models are described for the prediction of the performance of PV, wind and battery technologies. These models are based on manufacturers' specifications, location-related parameters and hourly weather data. The means of appraising the quality of match is outlined and examples are given of the application of the tool at the individual building and community levels
Development and demonstration of a renewable energy based demand/supply decision support tool for the building design profession
Future cities are likely to be characterised by a greater level of renewable energy systems deployment. Maximum impact will be achieved when such systems are used to offset local energy demands in contrast to current philosophy dictating the grid connection of large schemes. This paper reports on the development of a software tool, MERIT, for demand/ supply matching. The purpose of MERIT is to assist with the deployment of renewable energy systems at all scales. This paper describes the procedures used to match heterogeneous supply technologies to a set of demand profiles corresponding to the different possible fuel types
On-line energy services for smart homes
The EC funded 'Smart Homes' project commenced in 2001 as a 3 year programme. The primary objective is to establish Internet-based energy services and test these within field trials in Sweden, Greece, the Czech Republic and the UK. The tasks include the prototyping and testing of energy services for citizens and professionals, and the establishment of cable and wireless approaches to Internet connection. The implementations are based on residential gateway, or 'e-box', technology. Users, for example utilities, citizens, local authority energy managers and health care providers, can access the information through standard Web browsers and, depending on the particular energy service, may transmit information or control requests back to the originating homes. This paper sets out the overall structure of the SmartHomes system and reports on progress to date
On the fidelity of the core mass functions derived from dust column density data
Aims: We examine the recoverability and completeness limits of the dense core
mass functions (CMFs) derived for a molecular cloud using extinction data and a
core identification scheme based on two-dimensional thresholding.
Methods: We performed simulations where a population of artificial cores was
embedded into the variable background extinction field of the Pipe nebula. We
extracted the cores from the simulated extinction maps, constructed the CMFs,
and compared them to the input CMFs. The simulations were repeated using a
variety of extraction parameters and several core populations with differing
input mass functions and differing degrees of crowding.
Results: The fidelity of the observed CMF depends on the parameters selected
for the core extraction algorithm for our background. More importantly, it
depends on how crowded the core population is. We find that the observed CMF
recovers the true CMF reliably when the mean separation of cores is larger than
their mean diameter (f>1). If this condition holds, the derived CMF is accurate
and complete above M > 0.8-1.5 Msun, depending on the parameters used for the
core extraction. In the simulations, the best fidelity was achieved with the
detection threshold of 1 or 2 times the rms-noise of the extinction data, and
with the contour level spacings of 3 times the rms-noise. Choosing larger
threshold and wider level spacings increases the limiting mass. The simulations
show that when f>1.5, the masses of individual cores are recovered with a
typical uncertainty of 25-30 %. When f=1 the uncertainty is ~60 %. In very
crowded cases where f<1 the core identification algorithm is unable to recover
the masses of the cores adequately. For the cores of the Pipe nebula f~2.0 and
therefore the use of the method in that region is justified.Comment: 9 pages, 6 figures, accepted for publication in A&
Third Interger Resonance Slow Extraction Using RFKO at High Space Charge
A proposal to search for direct {\mu}-->e conversion at Fermilab requires
slow, resonant extraction of an intense proton beam. Large space charge forces
will present challenges, partly due to the substantial betatron tune spread.
The main challenges will be maintaining a uniform spill profile and moderate
losses at the septum. We propose to use "radio frequency knockout" (RFKO) for
fine tuning the extraction. Strategies for the use of the RFKO method will be
discussed here in the context of the Mu2e experiment. The feasibility of this
method has been demonstrated in simulations.Comment: 3 pp. 2nd International Particle Accelerator Conference: IPAC 2011.
4-9 Sep 2011. San Sebastian, Spai
Design and testing of a contra-rotating tidal current turbine
A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. High-frequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials
Merit - An evaluation tool for 100% renewable energy provision
Islands represent an interesting challenge in terms of energy supply. A great deal of work has been carried out to look at specific aspects of this issue on different islands. Unfortunately, results from one study cannot be easily applied to other islands due to island-specific resources and energy-use profiles. A quantitative evaluation tool (MERIT) is presented here, which is able to match half-hourly energy demands (heat, electricity, hot water and transport) with local supplies. The program examines the energy balance on any scale, from an individual building through to an entire country, thereby providing a powerful and generic aid to decision making. This paper demonstrates the generality and usefulness of MERIT by using it to analyse the options for creating an energy-autonomous community on a typical, small island off the west coast of Scotland. Results are presented showing the feasibility of accomplishing 100% renewable provision on this island using available local resources
The role of built environment energy efficiency in a sustainable UK energy economy
Energy efficiency in the built environment can make significant contributions to a sustainable energy economy. In order to achieve this, greater public awareness of the importance of energy efficiency is required. In the short term, new efficient domestic appliances, building technologies, legislation quantifying building plant performance, and improved building regulations to include installed plant will be required. Continuing these improvements in the longer term is likely to see the adoption of small-scale renewable technologies embedded in the building fabric. Internet-based energy services will see low-cost building energy management and control delivered to the mass market in order that plant can be operated and maintained at optimum performance levels and energy savings quantified. There are many technology options for improved energy performance of the building fabric and energy systems and it's not yet clear which will prove to be the most economic. Therefore, flexibility is needed in legislation and energy-efficiency initiatives
The EDEM methodology for housing upgrade analysis, carbon and energy labelling and national policy development
The ESRU Domestic Energy Model (EDEM) has been developed in response to demand from policy makers for a tool to assist in analysis of options for improving carbon and energy performance of housing across a range of possible future technologies, behaviours and environmental factors. A major challenge is to comprehend the large variation in fabric, systems (heating, hot water, lighting and appliances) and behaviours across the housing stock as well as uncertainty over future trends. Existing static models have limited ability to represent dynamic behaviour while use of detailed simulation has been based on modelling only a small number of representative designs. To address these challenges, EDEM has been developed as an easy to use, Web based tool, built on detailed simulation models aligned with national house survey data. From pragmatic inputs, EDEM can determine energy use and carbon emissions at any scale, from individual dwelling to national housing stock. EDEM was used at the behest of the Scottish Building Standards Agency and South Ayrshire Council to quantify the impact of upgrades including new and renewable energy systems. EDEM was also used to rate energy/carbon performance of dwellings as required by the EU Directive (EU, 2002). This paper describes the evolving EDEM methodology, its structure and operation then presents findings from applications. While initial EDEM projects have been for the Scottish housing stock the methodology is structured to facilitate project development and application to other countries
- …