395 research outputs found
Two new pathogenic ascomycetes in Guignardia and Rosenscheldiella on New Zealand's pygmy mistletoes (Korthalsella: Viscaceae)
Two new pathogens, Guignardia korthalsellae and
Rosenscheldiella korthalsellae, are described from New Zealand's
pygmy mistletoes (Korthalsella, Viscaceae). Both form
ascomata on living phylloclades with minimal disruption of the tissue. Fungal
hyphae within the phylloclade are primarily intercellular. Guignardia
korthalsellae disrupts a limited number of epidermal cells immediately
around the erumpent ascoma, while the ascomata of Rosenscheldiella
korthalsellae develop externally on small patches of stromatic tissue
that form above stomatal cavities. Rosenscheldiella is applied in a
purely morphological sense. LSU sequences show that R. korthalsellae
as well as another New Zealand species, Rosenscheldiella
brachyglottidis, are members of the Mycosphaerellaceae sensu
stricto. Genetically, Rosenscheldiella, in the sense we are
using it, is polyphyletic; LSU and ITS sequences place the two New Zealand
species in different clades within the Mycosphaerellaceae.
Rosenscheldiella is retained for these fungi until generic
relationships within the family are resolved. Whether or not the type species
of Rosenscheldiella, R. styracis, is also a member of the
Mycosphaerellaceae is not known, but it has a similar morphology and
relationship to its host as the two New Zealand species
Criticality in coupled quantum spin-chains with competing ladder-like and two-dimensional couplings
Motivated by the geometry of spins in the material CaCuO, we study a
two-layer, spin-half Heisenberg model, with nearest-neighbor exchange couplings
J and \alpha*J along the two axes in the plane and a coupling J_\perp
perpendicular to the planes. We study these class of models using the
Stochastic Series Expansion (SSE) Quantum Monte Carlo simulations at finite
temperatures and series expansion methods at T=0. The critical value of the
interlayer coupling, J_\perp^c, separating the N{\'e}el ordered and disordered
ground states, is found to follow very closely a square root dependence on
. Both T=0 and finite-temperature properties of the model are
presented.Comment: 9 pages, 11 figs., 1 tabl
The Magnetic Field of the Solar Corona from Pulsar Observations
We present a novel experiment with the capacity to independently measure both
the electron density and the magnetic field of the solar corona. We achieve
this through measurement of the excess Faraday rotation due to propagation of
the polarised emission from a number of pulsars through the magnetic field of
the solar corona. This method yields independent measures of the integrated
electron density, via dispersion of the pulsed signal and the magnetic field,
via the amount of Faraday rotation. In principle this allows the determination
of the integrated magnetic field through the solar corona along many lines of
sight without any assumptions regarding the electron density distribution. We
present a detection of an increase in the rotation measure of the pulsar
J18012304 of approximately 160 \rad at an elongation of 0.95 from
the centre of the solar disk. This corresponds to a lower limit of the magnetic
field strength along this line of sight of . The lack of
precision in the integrated electron density measurement restricts this result
to a limit, but application of coronal plasma models can further constrain this
to approximately 20mG, along a path passing 2.5 solar radii from the solar
limb. Which is consistent with predictions obtained using extensions to the
Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic
Charge order and low frequency spin dynamics in lanthanum cuprates revealed by Nuclear Magnetic Resonance
We report detailed 17O, 139La, and 63Cu Nuclear Magnetic Resonance (NMR) and
Nuclear Quadrupole Resonance (NQR) measurements in a stripe ordered
La1.875Ba0.125CuO4 single crystal and in oriented powder samples of
La1.8-xEu0.2SrxCuO4. We observe a partial wipeout of the 17O NMR intensity and
a simultaneous drop of the 17O electric field gradient (EFG) at low
temperatures where the spin stripe order sets in. In contrast, the 63Cu
intensity is completely wiped out at the same temperature. The drop of the 17O
quadrupole frequency is compatible with a charge stripe order. The 17O spin
lattice relaxation rate shows a peak similar to that of the 139La, which is of
magnetic origin. This peak is doping dependent and is maximal at x ~ 1/8.Comment: submitted to European Physical Journal Special Topic
Scaling Regimes, Crossovers, and Lattice Corrections in 2D Heisenberg Antiferromagnets
We study scaling behavior in 2D, S=1/2 and S=1 Heisenberg antiferromagnets
using the data on full q-dependences of the equal time structure factor and the
static susceptibility, calculated through high temperature expansions. We also
carry out comparisons with a model of two coupled S=1/2 planes with the
interlayer coupling tuned to the T=0 critical point. We separately determine
the spin-wave velocity c and mass , in addition to the correlation
length, , and find that c is temperature dependent; only for T\alt JS,
it approaches its known T=0 value . Despite this temperature dependent
spin-wave velocity, full q- and -dependences of the dynamical
susceptibility agree with the universal scaling functions
computable for the -model, for temperatures upto .
Detailed comparisons show that below the S=1 model is in the renormalized
classical (RC) regime, the two plane model is in the quantum critical (QC)
regime, and the S=1/2 model exhibits a RC-QC crossover, centered at T=0.55J. In
particular, for the S=1/2 model above this crossover and for the two-plane
model at all T, the spin-wave mass is in excellent agreement with the universal
QC prediction, . In contrast, for the S=1/2 model below the
RC-QC crossover, and for the S=1 model at all T, the behavior agrees with the
known RC expression. For all models nonuniversal behavior occurs above . Our results strongly support the conjecture of Chubukov and Sachdev
that the S=1/2 model is close to the T=0 critical point to exhibit QC behavior.Comment: 13 pages, REVTeX with attached PostScript (see file for addl info
Coexistence of double alternating antiferromagnetic chains in (VO)_2P_2O_7 : NMR study
Nuclear magnetic resonance (NMR) of 31P and 51V nuclei has been measured in a
spin-1/2 alternating-chain compound (VO)_2P_2O_7. By analyzing the temperature
variation of the 31P NMR spectra, we have found that (VO)_2P_2O_7 has two
independent spin components with different spin-gap energies. The spin gaps are
determined from the temperature dependence of the shifts at 31P and 51V sites
to be 35 K and 68 K, which are in excellent agreement with those observed in
the recent inelastic neutron scattering experiments [A.W. Garrett et al., Phys.
Rev. Lett. 79, 745 (1997)]. This suggests that (VO)_2P_2O_7 is composed of two
magnetic subsystems showing distinct magnetic excitations, which are associated
with the two crystallographically-inequivalent V chains running along the b
axis. The difference of the spin-gap energies between the chains is attributed
to the small differences in the V-V distances, which may result in the
different exchange alternation in each magnetic chain. The exchange
interactions in each alternating chain are estimated and are discussed based on
the empirical relation between the exchange interaction and the interatomic
distance.Comment: 10 pages, 11 embedded eps figures, REVTeX, Submitted to Phys. Rev.
Crystallization of a supercooled liquid and of a glass - Ising model approach
Using Monte Carlo simulations we study crystallization in the
three-dimensional Ising model with four-spin interaction. We monitor the
morphology of crystals which grow after placing crystallization seeds in a
supercooled liquid. Defects in such crystals constitute an intricate and very
stable network which separate various domains by tensionless domain walls. We
also show that the crystallization which occurs during the continuous heating
of the glassy phase takes place at a heating-rate dependent temperature.Comment: 7 page
Thermodynamic Properties of the Dimerised and Frustrated S=1/2 Chain
By high temperature series expansion, exact diagonalisation and temperature
density-matrix renormalisation the magnetic susceptibility and the
specific heat of dimerised and frustrated chains are computed.
All three methods yield reliable results, in particular for not too small
temperatures or not too small gaps. The series expansion results are provided
in the form of polynomials allowing very fast and convenient fits in data
analysis using algebraic programmes. We discuss the difficulty to extract more
than two coupling constants from the temperature dependence of .Comment: 14 pages, 13 figures, 4 table
Elementary Excitations in Dimerized and Frustrated Heisenberg Chains
We present a detailed numerical analysis of the low energy excitation
spectrum of a frustrated and dimerized spin Heisenberg chain. In
particular, we show that in the commensurate spin--Peierls phase the ratio of
the singlet and triplet excitation gap is a universal function which depends on
the frustration parameter only. We identify the conditions for which a second
elementary triplet branch in the excitation spectrum splits from the continuum.
We compare our results with predictions from the continuum limit field theory .
We discuss the relevance of our data in connection with recent experiments on
, , and .Comment: Corrections to the text + 1 new figure, will appear in PRB (august
98
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
- âŠ